普普通通的DP(按位贪心DP)

题目传送门

题意: 还记得这题吗?CF1332D 就是说一个二维矩阵,从(1,1)走到(n,m),只能向下或右走,获得的总贡献是每一步的&运算,问你最后能获得多少贡献。

思路: 我们很容易想到,dp[i][j]表示走到(i,j)的最大值,然后每步取大就行,但是这个方法是错误的,比如这个数据:

3 4
7 3 3 1
4 8 3 6
7 7 7 3

按照这种dp,答案是2,但是其实我们可以得到的最大贡献为3。因为我们要的是按位&的结果最大,但是可能到倒数第二步是有两种,一种是1000,还有一种是0100,但是a[n][m]是0110,按照原来dp的思路,倒数第二步存了1000,和最后一步按位与之后,答案变成了0,但是如果倒数第二步是0100,这样结果就是0100。

所以我们要获得最大价值,那么首先应该考虑的是高位,因为2i >(2i-1 + 2i-2 +…+20 ) 所以这个贪心方案是正确的。

我们从高位到低位遍历,之后再取低位的时候要首先满足这条路符合之前的选择。

我们用dp[i][j]表示在取第b位的时候能否走到(i,j),如果能,就从这个点出发,看是否能走下一步,最后如果这一位能走到(n,m),就把最后的总贡献加上(1<<b)。

#include<bits/stdc++.h>
#define endl '\n'
#define null NULL
#define ls p<<1
#define rs p<<1|1
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ll long long
#define int long long
#define pii pair<int,int>
#define ull unsigned long long
#define all(x) x.begin(),x.end()
#define IOS ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define ct cerr<<"Time elapsed:"<<1.0*clock()/CLOCKS_PER_SEC<<"s.\n";
char *fs,*ft,buf[1<<20];
#define gc() (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<20,stdin),fs==ft))?0:*fs++;
inline int read(){int x=0,f=1;char ch=gc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=gc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=gc();}
return x*f;}
using namespace std;
const int N=1e3+5;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
const double eps=1e-7;
const double PI=acos(-1);
int a[N][N],dp[N][N];
signed main()
{
    int n,m;
    cin>>n>>m;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        cin>>a[i][j];
    }
    int ans=0;
    for(int b=31;b>=0;b--)
    {
        if(a[1][1]&(1<<b))
        {
            memset(dp,0,sizeof dp);
            dp[1][1]=1;
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=m;j++)
                {
                    if(dp[i][j]&&(a[i][j]&(1<<b)))
                    {
                        if(i+1<=n&&(a[i+1][j]&ans)==ans)
                                dp[i+1][j]=1;
                        if(j+1<=m&&(a[i][j+1]&ans)==ans)
                                dp[i][j+1]=1;
                    }
                }
            }
            if(dp[n][m]&&(a[n][m]&(1<<b)))
                ans+=(1<<b);
        }
    }
    cout<<ans<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值