Codeforces 1624G 按位贪心

该博客介绍了一种解决无向图最小生成树问题的方法,通过按位贪心策略结合并查集判断能否构成生成树。程序首先初始化并查集,然后按位从高位到低位遍历边的权重,如果某位可以摒弃则标记该位所有边不使用,否则将该位设置为1。最终输出最小生成树的权重。
摘要由CSDN通过智能技术生成
题意:

给一副连通无向图,求最小或生成树的权值,或位二进制的或。

方法:

按位贪心,我们要求最小权值,自然不想让1出现在结果的高位上,那么我们从高位到低位考虑,设我们考虑到了第 i i i位,如果我们能不用第 i i i位是1的所有边来构造一颗生成树的话,显然我们是一定不考虑第 i i i位是1的边的,因为我们不想让1出现在高位,尽可能出现在更低位。所以我们我们从高到低来遍历位,如果这一位可以摒弃,那么我们对所有包含这一位的边打上标记,我们一定不使用他们,否则我们就不可避免地使用其中一条边,所以这一位就一定是1,就让 a n s ∣ = 1 < < i ans|=1<<i ans=1<<i

判断能否构成生成树利用并查集即可

#include<bits/stdc++.h>
#define ll long long
#define endl '\n'
using namespace std;

struct DSU
{
    vector<int>f;
    DSU(){};
    DSU(int n){
        f.resize(n+1);
        for(int i=1;i<=n;i++) f[i]=i;
    }
    int find(int k)
    {
        if(f[k]==k) return k;
        return f[k]=find(f[k]);
    }
    void merge(int x,int y)
    {
        if(x==y) return;
        x=find(x);y=find(y);
        f[x]=y;
    }
    bool same(int x,int y){
        return find(x)==find(y);
    }
    int operator[](int k){
        return f[k]=find(f[k]);
    }
};

struct way
{
    int u,v,w;
}edge[400005];

int n,m;
bool unused[400005];

bool check(int k)
{
    //检查是否不靠pos位就能构造生成树
    DSU x(n);
    int cnt=0;
    for(int i=1;i<=m&&cnt<n-1;i++)
    {
        int u=edge[i].u,v=edge[i].v,w=edge[i].w;
        if(unused[i]||((w>>k)&1)) continue;
        if(x.same(u,v)) continue;
        x.merge(u,v); cnt++;
    }
    return cnt==n-1;
}

void tag(int k)
{
    for(int i=1;i<=m;i++){
        if(edge[i].w>>k&1) unused[i]=true;
    }
}

void work()
{
    cin>>n>>m;
    int ans=0;
    for(int i=1;i<=m;i++) unused[i]=false;
    for(int i=1;i<=m;i++) cin>>edge[i].u>>edge[i].v>>edge[i].w;
    for(int i=30;i>=0;i--)
    {
        //检查不靠这一位能否组成一颗生成树
        //也就是检查这一位为0的所有边,如果是,那么标记上,我们就不用这个位置为1的所有边
        if(check(i)) tag(i);
        else ans|=1<<i;
    }
    cout<<ans<<endl;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);cout.tie(nullptr);
    int t=1;cin>>t;
    while(t--) work();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值