Round 6 B - Greg and Graph CodeForces - 295Div.1B - Floyd && DP

codeforces 295B B. Greg and Graph(floyd+dp)

标签: codeforcesdpfloyd最短路
1251人阅读 评论(1) 收藏 举报
分类:

题目链接:

codeforces 295B


题目大意:

给出n个点的完全有权有向图,每次删去一个点,求每次操作前整张图各个点的最短路之和。


题目分析:

  • 首先删边对于我们来说是不好做的,所以我们想到了通过加点的方式逆向地做,那么加点怎么做呢?
  • 其实就是一个我们很熟悉的算法:floyd,因为我们通常用的都是它的简化版本,所以可能很多人并不理解它的确切的思想。
  • 在介绍这道题的具体解法之前,我先解释一下floyd,可能之后的问题就迎刃而解了。
  • 首先floyd其实是动态规划,没有省略时的状态是这样定义的。dp[k][i][j]代表前k个点作为媒介的情况下i到j的最短路。
  • 转移方程也很简单,如下:
    dp[k][i][j]=min(dp[k1][i][j],dp[k1][i][k]+dp[k1][k][j])
  • 这样我们就知道了 n3 的递推中,最后一维其实标记的是作为媒介的点是前k个的情况,那么也就是我们之要1~k这些点组成图的最短路,那么因为在求取最短路时,并没有用后面的点作为媒介,所以就是我们要的答案,因为加入点无序,所以我们要先用hash将点对应到有序的序列上,然后直接利用floyd做就可以了,不懂的可以在评论中询问,我会耐心解答的。

AC代码:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <map>
#define MAX 507

using namespace std;

typedef long long LL;

LL dp[MAX][MAX],ans[MAX],a[MAX][MAX];
int n,x[MAX];
map<int,int> mp;

int main ( )
{
    while (~scanf ( "%d" , &n ))
    {
        mp.clear();
        for ( int i = 1 ; i <= n ; i++ )
            for ( int j = 1 ; j <= n ; j++ )
                scanf ( "%I64d" , &a[i][j] );
        for ( int i = 1 ; i <= n ; i++ )
        {
            scanf ( "%d" , &x[i] );
            mp[x[i]] = n+1-i;
        }
        for ( int i = 1 ; i <= n ; i++ )
            for ( int j = 1 ; j <= n ; j++ )
                dp[mp[i]][mp[j]] = a[i][j];
        for ( int k = 1; k <= n ; k++ )
        {
            for ( int i = 1 ; i <= n ; i++ )
                for ( int j = 1 ; j <= n ; j++ )
                    dp[i][j] = min ( dp[i][j] , dp[i][k] + dp[k][j] );
            for ( int i = 1 ; i <= k; i++ )
                for ( int j = 1 ; j <= k; j++ )
                    ans[n-k+1] += dp[i][j];
        }
        for ( int i = 1 ; i <= n ; i++ )
            printf ( "%I64d " , ans[i] );
        puts ("");
    }
}

    
    
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
1
0
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值