PyTorch入门学习-基本数据Tensor
Tensor, 即张量,是PyTorch中的基本操作对象,可以看做是包含单一数据类型元素的多维矩阵。从使用角度来看,Tensor与NumPy的ndarrays非常类似,相互之间也可以自由转换,只不过Tensor支持GPU的加速。
Tensor数据类型
Tensor在使用时可以有不同的数据类型,如表所示,官方给出了7种CPU Tensor类型与8种GPU类型,在使用时可以根据网络模型所需的精度与显存容量,合理地选取。16位半精度浮点是专为GPU上运行的模型设计的,以尽可能地节省GPU显存占用,但这种节省显存空间的方式也缩小了所能表达数据的大小。PyTorch中默认的数据类型是torch.FloatTensor,即torch.Tensor等同于torch.FloatTensor。
数据类型 | CPU Tensor | GPU Tensor |
---|---|---|
32位浮点 | torch.FloatTensor | torch.cuda.FloatTensor |
63位浮点 | torch.Double.Tensor | torch.cuda.DoubleTensor |
16位半精度浮点 | N/A | torch.cuda.HalfTensor |
8位无符号整型 | torch.ByteTensor | torch.cuda.ByteTensor |
8位有符号整型 | torch.CharTensor | torch.cuda.CharTensor |
16位有符号整型 | torch.ShortTensor | torch.cuda.ShortTensor |
32位有符号整型 | torch.IntTensor | torch.cuda.IntTensor |
64位有符号整型 | torch.LongTensor | torch.cuda.LongTensor |
PyTorch可以通过set_default_tensor_type函数设置默认使用的Tensor类型,在局部使用完后如果需要其他类型,则还需要重新设置回所需的类型。
torch.set_default_tensor_type('torch.DoubleTensor')
对于Tensor之间的类型转换,有以下三种方式
import torch
a = torch.Tensor(2, 2) # 创建新Tensor,默认类型为torch.FloatTensor
b = a.double() # 1.使用int()、float()、double()等直接进行数据类型转换
c = a.type(torch.DoubleTensor) # 2.使用type()函数
d = a.type_as(b) # 3.使用type_as()函数
print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)
Tensor的创建与维度查看
Tensor有多种创建方法, 如下:
import torch
a = torch.Tensor(2, 2) # 1.基础Tensor函数
b = torch.DoubleTensor(2, 2) # 2.指定类型
c = torch.Tensor([[1, 2], [3, 4]]) # 3.使用python的list序列
d = torch.zeros(2, 2) # 4.默认值为0
e = torch.ones(2, 2) # 5.默认值为1
f = torch.eye(