PyTorch学习-基本数据Tensor


Tensor, 即张量,是PyTorch中的基本操作对象,可以看做是包含单一数据类型元素的多维矩阵。从使用角度来看,Tensor与NumPy的ndarrays非常类似,相互之间也可以自由转换,只不过Tensor支持GPU的加速。

Tensor数据类型

Tensor在使用时可以有不同的数据类型,如表所示,官方给出了7种CPU Tensor类型与8种GPU类型,在使用时可以根据网络模型所需的精度与显存容量,合理地选取。16位半精度浮点是专为GPU上运行的模型设计的,以尽可能地节省GPU显存占用,但这种节省显存空间的方式也缩小了所能表达数据的大小。PyTorch中默认的数据类型是torch.FloatTensor,即torch.Tensor等同于torch.FloatTensor。

数据类型 CPU Tensor GPU Tensor
32位浮点 torch.FloatTensor torch.cuda.FloatTensor
63位浮点 torch.Double.Tensor torch.cuda.DoubleTensor
16位半精度浮点 N/A torch.cuda.HalfTensor
8位无符号整型 torch.ByteTensor torch.cuda.ByteTensor
8位有符号整型 torch.CharTensor torch.cuda.CharTensor
16位有符号整型 torch.ShortTensor torch.cuda.ShortTensor
32位有符号整型 torch.IntTensor torch.cuda.IntTensor
64位有符号整型 torch.LongTensor torch.cuda.LongTensor

PyTorch可以通过set_default_tensor_type函数设置默认使用的Tensor类型,在局部使用完后如果需要其他类型,则还需要重新设置回所需的类型。

torch.set_default_tensor_type('torch.DoubleTensor')

对于Tensor之间的类型转换,有以下三种方式

import torch
a = torch.Tensor(2, 2)          # 创建新Tensor,默认类型为torch.FloatTensor
b = a.double()                  # 1.使用int()、float()、double()等直接进行数据类型转换
c = a.type(torch.DoubleTensor)  # 2.使用type()函数
d = a.type_as(b)                # 3.使用type_as()函数

print("a: ", a)
print("b: ", b)
print("c: ", c)
print("d: ", d)

Tensor的创建与维度查看

Tensor有多种创建方法, 如下:

import torch
a = torch.Tensor(2, 2)              # 1.基础Tensor函数
b = torch.DoubleTensor(2, 2)        # 2.指定类型
c = torch.Tensor([[1, 2], [3, 4]])  # 3.使用python的list序列
d = torch.zeros(2, 2)               # 4.默认值为0
e = torch.ones(2, 2)                # 5.默认值为1
f = torch.eye(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值