解决解压过程中出现文件路径过长的报错以及jupyter notebook中图片显示不出来等问题

作者在尝试从GitHub下载吴恩达机器学习资料时遇到解压错误,通过更换解压工具并修正JupyterNotebook中图片路径解决了问题,确保了课程资料的正常访问。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天在github上把吴恩达机器学习的资料下载到本地后解压的过程中出现以下报错:

错误 0x80010135

我的解决办法是换一个解压工具,然后就不会出现报错了。

然后在打开jupyter notebook中的文件后发现课件里的图片显示不出来

发现是打开notebook的路径错了

我是在这里通过终端打开的notebook,但文件中并没有保存图片的路径

通过查看图片的路径后,在相应的文件层打开notebook

成功!

### Jupyter Notebook 安装时的 Anaconda 环境配置问题 在安装 Jupyter Notebook过程中,如果遇到与 Anaconda 环境配置相关的报错,通常是因为环境设置当或者权限足引起的。以下是针对该问题的具体分析和解决方案。 #### 1. 环境复杂化带来的风险 当使用多个包管理工具(如 `brew`、`pip` 和 `conda`)混合管理 Python 环境时,容易导致依赖冲突或路径混乱[^1]。为了避免这种情况的发生,在安装 Jupyter Notebook 前应优先考虑以下几点: - **创建独立的 Conda 环境** 使用 Conda 创建一个新的虚拟环境可以有效隔离同项目的依赖关系。命令如下: ```bash conda create -n myenv python=3.9 ``` - **激活新环境并安装 Jupyter Notebook** 激活刚刚创建的环境后,通过 Conda 安装 Jupyter Notebook 及其相关组件: ```bash conda activate myenv conda install jupyterlab ``` #### 2. 权限问题引发的错误 某些情况下,Anaconda 默认安装路径可能受到操作系统级别的权限限制,尤其是在 Windows 上尝试修改受保护文件夹中的内容时。例如,“c:\programdata\anaconda3” 路径下的文件可能会因为权限足而无法被正常写入或读取[^2]。 对此类问题的处理方式包括但限于以下两种方法: - **使用 `--user` 参数** 如果仅需局部调整而影响全局环境,则可以在 pip 或其他命令中加入 `--user` 栄号以降低操作级别至用户空间内完成相应任务。 - **更改默认工作目录** 将 Anaconda 移动到一个无需管理员权限即可自由存取的位置重新解压部署也是一个可行方案。 #### 3. 文件结构确认 对于基于特定项目构建的服务端应用而言,合理的模块划分有助于后期维护扩展等工作顺利开展。从已知案例来看,test 目录树展示了一个较为清晰的功能分区模式[^3]: ```plaintext test/ ├── locust_rss/ │ ├── __init__.py │ ├── action.py │ ├── locust_rss_http.py │ ├── locustfile.py │ └── utils.py ├── setting.py └── test_rss.py ``` 这种布局仅便于理解各部分职责所在,同时也方便后续引入更多测试脚本或其他辅助功能模块. --- ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值