pytorch深度学习入门简记(自用)

本文介绍了使用PyTorch进行基础学习的笔记,包括环境设置、Pythonconsole测试、重要函数如`torch.cuda.is_available()`的使用,以及PyCharm和Jupyter的不同编辑方式对比,最后提及了数据加载中的DataSet类。
摘要由CSDN通过智能技术生成

前言

跟在小土堆大大课程学习的pytorch学习基础笔记,粗略记下,自用自用自用。


一、环境与驱动

conda install pytorch torchvision cudatoolkit=9.2 -c pytorch -c defaults -c numba/label/dev
驱动安装:
NVIDIA\DisplayDriver\531.18\Win11_Win10-DCH_64\International

二、Python Console Test

代码如下:

#测试torch是否安装成功
import torch
torch.cuda.is_available() #成功则显示true
b=range(1,4)
b=list(range(1,4)) #显示123

#jupyter安装依赖anaconda,存在一个问题,jupyter只存在base环境中。
conda active pytorch
conda install nb_conda #安装jupyter前安装这个包
jupyter notebook
#在jupyter右上角选择环境 python[conda env:pytorch]
import torch
torch.cuda.is_available() #shift+回车运行当前代码,成功则显示true

三、Python中的两大重要函数

代码如下:

#dir():打开,看见 ;help():说明书 用来探索“工具箱”的内部
 #实际操作,console类似matlab操作台。创建新项目在existing envir中找到对应虚拟环境的python.exe编辑器
import torch
torch.cuda.is_available()
dir(torch)
dir(torch.cuda)
dir(torch.cuda.is_available) #结果显示‘_ _xx_ _’表示变量,且is_available不是分隔区了,而是一个函数
help(torch.cuda.is_available)

四、Pycharm和Jupyter的比较

1. 三种编辑方式

代码如下:

#在Pycharm中创建新的项目,首先要为项目添加相应的Python解释器Add Configure->+->python->Script path,Python interpreter
print("Hello World")
#除了新建项目写代码,还可在python控制台写代码。原理是将每一行作为作为代码块执行

#Jupyter使用 
#在anaconda prompt中输入打开jupyter的代码
conda activate pytorch #打开虚拟环境
jupyter notebook
#shift+回车运行代码,以块为整体

2.三种编辑方式对比

以执行以下代码为例
在这里插入图片描述
python文件的块是所有行的代码
python控制台是以(任意)行为块运行,最好是单行
Jupyter可以任意行为块运行
可交叉使用


五、PyTorch加载数据

首先,读取数据涉及两个类型
在这里插入图片描述
其次,数据集有不同的组织形式。
以一个二分类数据集为例,
在这里插入图片描述
如何使用DataSet类,代码如下:
待续。。。。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值