前言
跟在小土堆大大课程学习的pytorch学习基础笔记,粗略记下,自用自用自用。
一、环境与驱动
conda install pytorch torchvision cudatoolkit=9.2 -c pytorch -c defaults -c numba/label/dev
驱动安装:
NVIDIA\DisplayDriver\531.18\Win11_Win10-DCH_64\International
二、Python Console Test
代码如下:
#测试torch是否安装成功
import torch
torch.cuda.is_available() #成功则显示true
b=range(1,4)
b=list(range(1,4)) #显示1,2,3
#jupyter安装依赖anaconda,存在一个问题,jupyter只存在base环境中。
conda active pytorch
conda install nb_conda #安装jupyter前安装这个包
jupyter notebook
#在jupyter右上角选择环境 python[conda env:pytorch]
import torch
torch.cuda.is_available() #shift+回车运行当前代码,成功则显示true
三、Python中的两大重要函数
代码如下:
#dir():打开,看见 ;help():说明书 用来探索“工具箱”的内部
#实际操作,console类似matlab操作台。创建新项目在existing envir中找到对应虚拟环境的python.exe编辑器
import torch
torch.cuda.is_available()
dir(torch)
dir(torch.cuda)
dir(torch.cuda.is_available) #结果显示‘_ _xx_ _’表示变量,且is_available不是分隔区了,而是一个函数
help(torch.cuda.is_available)
四、Pycharm和Jupyter的比较
1. 三种编辑方式
代码如下:
#在Pycharm中创建新的项目,首先要为项目添加相应的Python解释器Add Configure->+->python->Script path,Python interpreter
print("Hello World")
#除了新建项目写代码,还可在python控制台写代码。原理是将每一行作为作为代码块执行
#Jupyter使用
#在anaconda prompt中输入打开jupyter的代码
conda activate pytorch #打开虚拟环境
jupyter notebook
#shift+回车运行代码,以块为整体
2.三种编辑方式对比
以执行以下代码为例
python文件的块是所有行的代码
python控制台是以(任意)行为块运行,最好是单行
Jupyter可以任意行为块运行
可交叉使用
五、PyTorch加载数据
首先,读取数据涉及两个类型
其次,数据集有不同的组织形式。
以一个二分类数据集为例,
如何使用DataSet类,代码如下:
待续。。。。