在一个进程内的所有线程是共享全局变量,共享数据,但是多个线程对变量进行修改操作,就可能资源竞争导致数据错误。 如:
import threading
num = 0
def work1():
global num
for i in range(1000000):
num += 1
print(num)
def work2():
global num
for i in range(1000000):
num += 1
print(num)
if __name__ == '__main__':
first_threading = threading.Thread(target=work1)
second_threading = threading.Thread(target=work2)
first_threading.start()
second_threading.start()
结果
1212612
1226204
全局变量num,被两个线程做加一操作,无论线程的执行顺序怎么样,最后的结果,应该是2000000才对。但是,最后的结果却小于2000000,为什么:
例如图1:加入线程work1刚取到num=0,还没有来的急加一操作,此时cpu就线程work2抢走,work2读取的num=0,那么线程work1和work2加一操作的计算结果都是1,最后num=1,但实际加了两次,所以num最后的结果必然会小。
那么如果像图二那种情况呢,可能减少的就更加明显,work2取到num=0,还是没有来得及进行加一,此时被work1抢走,num=0,work1对num进行了多次加一操作,num远大于1,然后work2才开始加1,但是是num=0+1=1,计算结果反而变小了。
那么如何避免线程在操作全局变量的时候,资源竞争的行为呢?
import threading
num = 0
def work1():
global num
for i in range(1000000):
num += 1
print(num)
def work2():
global num
for i in range(1000000):
num += 1
print(num)
if __name__ == '__main__':
first_threading = threading.Thread(target=work1)
second_threading = threading.Thread(target=work2)
first_threading.start()
first_threading.join()
second_threading.start()
结果:
1000000
2000000
用join去阻塞第二个线程的开启,这就相当于,work1先执行,执行完成之后,work2在执行,但是这样开线程的目的就没有了。
import threading
lock = threading.Lock()
num = 0
def work1():
global num
for i in range(1000000):
lock.acquire()
num += 1
lock.release()
print(num)
def work2():
global num
for i in range(1000000):
lock.acquire()
num += 1
lock.release()
print(num)
if __name__ == '__main__':
first_threading = threading.Thread(target=work1)
second_threading = threading.Thread(target=work2)
first_threading.start()
second_threading.start()
print("主线程继续。。。。。。")
结果
主线程继续。。。。。。
1982313
2000000
采用互斥锁,来保证加一操作期间不会别其他进程同时操作num。
当一个现成调用acquire(),那么索就进入blocked的状态,此时如果有另一个线程调用acquire(),那么他将被阻塞,直到拥有锁的线程release。
互斥锁有点:可以让关键代码只能由一个现成从头到尾的执行完,缺点:不能并发(但是python本身有GIL。),可能死锁。