二分法总结

两种区间的定义,我喜欢用第一种:左闭右开

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
  • 寻找第一个满足XXX的位置:左闭右开
  • int left = 0, right = nums.length - 1;
    while (left < right) {
      int middle = left + (right - left) / 2;
      if (满足XXX) {
        right = middle;
      } else {
        left = middle + 1;
      }
    }
  • 寻找最后一个满足XXX的位置:(在上升数组中存在重复elem的时候)右闭左开
int left = 0, right = nums.length - 1;
while (left < right) {
  // +1是为了让相除结果向上取整,这个地方就是两套模板的区别之一
  int middle = left + (right - left + 1) / 2;
  if (满足XXX) {
    left = middle;
  } else {
    right = middle - 1;
  }
}

假设你只会用 寻找第一个满足XXX 这个模板,但是遇到的实际需求是 寻找最后一个满足XXX ,你完全可以将二分目标修改为: 寻找第一个不满足XXX 的位置(也就是把 if条件 改成对应相反的,其余都不用动)。可知它的上一个位置就是 最后一个满足XXX 的。你把算出来的二分结果减去1,就是答案了。(反之同理,由 最后一个 -> 第一个 是 +1 操作)

int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target) {
                right = middle; // target 在左区间,在[left, middle)中
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,在[middle + 1, right)中
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }

 

用左闭右开区间解决,下面解析非常好 

疑问:为什么while的条件是low<high,而不是low<=high呢
解答:low<high,假如最后循环到{*,10,1,*}的这种情况时,nums[low]=10,nums[high]=1,nums[mid]=10,low=mid+1。
直接可以跳出循环了,所以low<high,此时low指向的就是最小值的下标;

如果low<=high的话,low=high,还会再不必要的循环一次,此时最后一次循环的时候会发生low==high==mid,则nums[mid]==nums[high],则会走一次else语句,则low=mid+1,此时low指向的是最小值的下一个下标,则需要return[low-1]

public static int findMin(int[] nums) {
        int len = nums.length;
        int low = 0;
        int high = len-1;

//        二分查找
        while(low < high){
//            取中间值
            int mid = (high+low)/2;
//            如果中间值小于最大值,则最大值减小
//            疑问:为什么 high = mid;而不是 high = mid-1;
//            解答:{4,5,1,2,3},如果high=mid-1,则丢失了最小值1
            if (nums[mid] < nums[high]) {
                high = mid;
            } else {
//                如果中间值大于最大值,则最小值变大
//                疑问:为什么 low = mid+1;而不是 low = mid;
//                解答:{4,5,6,1,2,3},nums[mid]=6,low=mid+1,刚好nums[low]=1
//                继续疑问:上边的解释太牵强了,难道没有可能low=mid+1,正好错过了最小值
//                继续解答:不会错过!!! 如果nums[mid]是最小值的话,则其一定小于nums[high],走if,就不会走else了
                low = mid+1;
            }
        }
//        疑问:为什么while的条件是low<high,而不是low<=high呢
//        解答:low<high,假如最后循环到{*,10,1,*}的这种情况时,nums[low]=10,nums[high]=1,nums[mid]=10,low=mid+1,
//             直接可以跳出循环了,所以low<high,此时low指向的就是最小值的下标;
//             如果low<=high的话,low=high,还会再不必要的循环一次,此时最后一次循环的时候会发生low==high==mid,
//             则nums[mid]==nums[high],则会走一次else语句,则low=mid+1,此时low指向的是最小值的下一个下标,
//             则需要return[low-1]
        return nums[low];
    }

 

def search(self, nums: List[int], target: int) -> int:
        #use binary search: the solution may not exist
        n = len(nums)
        left,right = 0, n-1
        while left<=right:
            mid = (left+right)//2
            if nums[mid] == target:
                return mid
            #check whether mid is in the left sorted portion or right sorted portion
            if nums[mid]>=nums[0]:
                #in left sorted portion
                if target < nums[mid] and target>=nums[0]:
                    right = mid-1
                else:
                    left = mid+1
            else:
                #in right sorted portion
                if target>nums[mid] and target<=nums[n-1]:
                    left = mid+1
                else:
                    right = mid-1
        return -1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值