两种区间的定义,我喜欢用第一种:左闭右开
- while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
- if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
- 寻找第一个满足XXX的位置:左闭右开
-
int left = 0, right = nums.length - 1; while (left < right) { int middle = left + (right - left) / 2; if (满足XXX) { right = middle; } else { left = middle + 1; } }
- 寻找最后一个满足XXX的位置:(在上升数组中存在重复elem的时候)右闭左开
int left = 0, right = nums.length - 1;
while (left < right) {
// +1是为了让相除结果向上取整,这个地方就是两套模板的区别之一
int middle = left + (right - left + 1) / 2;
if (满足XXX) {
left = middle;
} else {
right = middle - 1;
}
}
假设你只会用 寻找第一个满足XXX
这个模板,但是遇到的实际需求是 寻找最后一个满足XXX
,你完全可以将二分目标修改为: 寻找第一个不满足XXX
的位置(也就是把 if条件
改成对应相反的,其余都不用动)。可知它的上一个位置就是 最后一个满足XXX
的。你把算出来的二分结果减去1,就是答案了。(反之同理,由 最后一个 -> 第一个
是 +1
操作)
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
int middle = left + ((right - left) >> 1);
if (nums[middle] > target) {
right = middle; // target 在左区间,在[left, middle)中
} else if (nums[middle] < target) {
left = middle + 1; // target 在右区间,在[middle + 1, right)中
} else { // nums[middle] == target
return middle; // 数组中找到目标值,直接返回下标
}
}
// 未找到目标值
return -1;
}
用左闭右开区间解决,下面解析非常好
疑问:为什么while的条件是low<high,而不是low<=high呢
解答:low<high,假如最后循环到{*,10,1,*}的这种情况时,nums[low]=10,nums[high]=1,nums[mid]=10,low=mid+1。
直接可以跳出循环了,所以low<high,此时low指向的就是最小值的下标;
如果low<=high的话,low=high,还会再不必要的循环一次,此时最后一次循环的时候会发生low==high==mid,则nums[mid]==nums[high],则会走一次else语句,则low=mid+1,此时low指向的是最小值的下一个下标,则需要return[low-1]
public static int findMin(int[] nums) {
int len = nums.length;
int low = 0;
int high = len-1;
// 二分查找
while(low < high){
// 取中间值
int mid = (high+low)/2;
// 如果中间值小于最大值,则最大值减小
// 疑问:为什么 high = mid;而不是 high = mid-1;
// 解答:{4,5,1,2,3},如果high=mid-1,则丢失了最小值1
if (nums[mid] < nums[high]) {
high = mid;
} else {
// 如果中间值大于最大值,则最小值变大
// 疑问:为什么 low = mid+1;而不是 low = mid;
// 解答:{4,5,6,1,2,3},nums[mid]=6,low=mid+1,刚好nums[low]=1
// 继续疑问:上边的解释太牵强了,难道没有可能low=mid+1,正好错过了最小值
// 继续解答:不会错过!!! 如果nums[mid]是最小值的话,则其一定小于nums[high],走if,就不会走else了
low = mid+1;
}
}
// 疑问:为什么while的条件是low<high,而不是low<=high呢
// 解答:low<high,假如最后循环到{*,10,1,*}的这种情况时,nums[low]=10,nums[high]=1,nums[mid]=10,low=mid+1,
// 直接可以跳出循环了,所以low<high,此时low指向的就是最小值的下标;
// 如果low<=high的话,low=high,还会再不必要的循环一次,此时最后一次循环的时候会发生low==high==mid,
// 则nums[mid]==nums[high],则会走一次else语句,则low=mid+1,此时low指向的是最小值的下一个下标,
// 则需要return[low-1]
return nums[low];
}
def search(self, nums: List[int], target: int) -> int:
#use binary search: the solution may not exist
n = len(nums)
left,right = 0, n-1
while left<=right:
mid = (left+right)//2
if nums[mid] == target:
return mid
#check whether mid is in the left sorted portion or right sorted portion
if nums[mid]>=nums[0]:
#in left sorted portion
if target < nums[mid] and target>=nums[0]:
right = mid-1
else:
left = mid+1
else:
#in right sorted portion
if target>nums[mid] and target<=nums[n-1]:
left = mid+1
else:
right = mid-1
return -1