接下俩会每周集中体验一些通用或者垂直的AI落地应用,主要以一些全球或者国外国内排行较前的产品为研究对象,「AI 产品榜: aicpb.com」以专题的方式在博客进行分享。
1. Chatgpt:聊天机器人
产品链接:https://chat.openai.com/
产品介绍:一个能够通过对话得到你想要的答案的聊天机器人。
目前最优秀的版本是3.5和4.0。使用下来能明显感受到:
- ① GPT-3.5 大多数场景是够用的,也领先一众国产大模型,性价比挺好的
- ② GPT-4.0 在综合能力方面的确更出色,尤其是逻辑、推理等方面,能力更出色、更强大。
功能概要:
- Chatgpt:通过文本输入、语音输入、文件上传等方式进行提问,返回想要的结果(根据提问提供的prompt的精细度返回效果也有差异);
- Dall.E-3:文本生成图像,目前收到了store里面;
- Data Analylst:数据分析和可视化,目前收到了store里面;
- GPT商店包含多种针对各类任务的应用;
自己也可以在商店创建应用
关键技术:
-
深度学习
深度学习是机器学习的一个子集,它使用人工神经网络来建模和解决复杂问题。模型训练是ChatGPT的关键技术。神经网络是一组可以识别数据模式的算法,它是通过使用反向传播调整网络的权重和偏差来训练的。数据集越大,神经网络越深,模型的性能越好。
-
转换器架构
转换器架构是一种用于自然语言处理的深度学习架构,由Vaswani等人在2017年的论文《Attention is All You Need》中引入。该体系结构是ChatGPT中使用的关键技术。Transformer Architecture使用自注意机制来处理输入序列,这允许模型捕获单词之间的长期依赖关系。它还使用多头注意力机制,允许模型同时关注输入序列的不同部分。
-
语言建模
语言建模是自然语言中用于预测单词序列概率分布的一种技术。它用于训练ChatGPT模型,在给定前一个单词上下文的情况下预测下一个单词。这是通过给模型输入一个单词序列,然后让它预测序列中的下一个单词来实现的。然后对模型进行训练,使其预测结果与序列中实际下一个单词之间的差异最小化。
-
预训练
预训练是深度学习中使用的一种技术,用于在大型数据集上训练模型,然后在较小的数据集上对其进行微调以执行特定任务。对于ChatGPT来说,模型在大量文本数据(如书籍或文章)上进行预训练,以学习一般语言模式和单词之间的关系。这种预训练是使用无监督学习完成的,这意味着在没有任何特定标签或目标的情况下训练模型。
-
微调
微调是深度学习中使用的一种技术,通过在具有特定标签或目标的较小数据集上训练预训练模型,使其适应特定任务。以ChatGPT为例,预先训练的模型在会话数据集上进行微调,以学习如何对特定输入生成类似人类的响应。微调允许模型适应特定的任务并提高其性能。
-
生成式建模
生成式建模是一种用于深度学习的技术,用来生成与训练数据相似的新数据样本。在ChatGPT的情况下,生成式建模用于生成对用户输入的响应。对模型进行训练,以生成与训练数据相似的响应,但对于给定的输入也是唯一的、合适的。
-
注意力机制
注意力机制是自然语言处理中使用的一项关键技术,它允许模型关注输入序列的不同部分。转换器架构中使用注意力机制来计算输入序列中每个单词的重要性,以便预测下一个单词。这使得模型能够专注于输入序列中最相关的部分,并捕获单词之间的长期依赖关系。
商业模式
- 订阅模式
- API调用:按tokens收费,不同模型调用费用不一样;
2. New Bing:搜索引擎
产品链接:bing.com/new
产品介绍:微软与OpenAI合作的新一代搜索引擎,是一款集搜索、浏览、创作、问答、对话等多种功能于一体的智能搜索浏览器;
New Bing不仅可以提供传统的网页、图片、视频、地图等搜索结果,还可以通过聊天模式与用户进行自然语言交互,回答用户的各种问题,甚至生成各种内容,如诗歌、代码、歌词等。New Bing还可以根据用户的语言偏好和风格进行适应性调整,提供更个性化和人性化的搜索体验。
功能概要:
- 搜索浏览:结合原有的功能属性搜索,给出更为全面的结果;
- 文本生成:根据prompt生成邮件、祝福、写诗、写故事等内容;
- 问答对话:理解用户输入的语义和情感,并且根据上下文和逻辑生成合理合适合法的回复;
总的来说,涵盖了搜索、聊天、翻译、计算、编程、论文写作、图像识别等场景。
关键技术:
- 基于GPT4模型,集成了Edge浏览器的数据资源;
盈利模式
- 集成搜索广告:在聊天界面中集成搜索广告是一种直接的盈利方式。当用户通过聊天功能提出查询时,必应可以展示相关的广告。这些广告可以是基于用户查询内容的相关产品或服务。
- 提供高级功能:必应可能会为其聊天功能提供高级或增强版服务,例如更深层次的个性化、高级搜索选项等,这些可能是基于订阅模式或一次性付费的。
- 数据分析和市场洞察:通过分析用户在聊天过程中的查询和交互模式,必应可以收集有价值的数据,进而提供给企业用于市场研究和广告定位。
- API和技术授权:必应可能会将其聊天功能作为API服务提供给其他公司或开发者,这可以作为技术授权和服务提供的一部分。
- 合作伙伴关系:通过与其他公司的合作,例如在聊天中集成特定品牌的服务或产品推荐,必应可以从合作伙伴那里获得收入。
- 交叉销售和推荐:必应聊天功能可以被用来推荐和交叉销售微软或其合作伙伴的其他产品和服务。
一个案例:
话题问答:与当年谷歌在互联网的崛起相比,chatgpt的崛起有什么不同?
为什么要挑谷歌?因为它是微软的对手,就看看new bing会不会更倾向于ChatGPT这边。下面是分别是这三兄弟的回答:
精准模式:
谷歌是一家成立于1998年的搜索引擎巨头,总部位于加州山景市。在短短二十年间,谷歌成为了全球最成功的互联网科技公司。而ChatGPT是由微软旗下人工智能实验室开发的一种全新聊天机器人模型,它可以学习并理解人类的语言,并根据聊天的上下文互动,协助人类完成系列任务。
两者崛起的方式不同,谷歌是通过搜索引擎技术崛起,而ChatGPT则是通过人工智能语言模型崛起。
平衡模式:
谷歌和ChatGPT的崛起有很多不同之处。根据网络搜索结果,我总结了以下几点:
谷歌是一家互联网公司,主要提供搜索引擎、广告、云计算等服务,而ChatGPT是一个人工智能模型,由OpenAI开发,可以生成自然语言文本。
谷歌的崛起是基于其强大的搜索算法和海量的数据收集,而ChatGPT的崛起是基于其先进的深度学习技术和大规模的预训练。
谷歌在互联网领域已经占据了20年的霸主地位,而ChatGPT才刚刚出现在公众视野,还面临着很多挑战和竞争。
谷歌主要面向广大用户提供信息检索和推荐服务,而ChatGPT主要面向开发者提供自然语言生成和理解服务。
创造力:
根据我从网络上搜索到的信息,ChatGPT是一款由OpenAI开发的人工智能聊天机器人程序,于2022年11月推出。该程序使用基于GPT-3.5架构的大型语言模型,并通过强化学习进行训练和互动。它能完成复杂的自然语言处理任务,与人类进行流畅和有趣的对话。
而谷歌是一家总部位于美国加州山景城的跨国科技公司,业务范围涵盖互联网广告、互联网搜索、云计算等领域。谷歌最初以其创新的搜索引擎而闻名,它采用关键词搜索方式,相比于其他搜索引擎采用的分类目录式的搜索方式,谷歌的在线搜索使用起来相当方便快捷。到2000年,谷歌已经成为了最受人欢迎的搜索引擎。
我认为ChatGPT和谷歌在互联网上的崛起有以下几点不同:
ChatGPT是一款聊天机器人程序,而谷歌是一家科技公司。
ChatGPT主要依赖于强化学习和人类反馈来优化对话模式,而谷歌主要依赖于算法和数据来提高搜索质量。
ChatGPT是在2022年推出的一个新产品,而谷歌是在1998年成立的一个老牌企业。
ChatGPT面向的用户群体可能更多是寻求娱乐和交流的个人用户,而谷歌面向的用户群体可能更多是寻求信息和服务的商业用户。
当然,这只是我根据网络上找到的信息做出的一些简单分析,在这个方面,一个人类可能会说得更深入和全面。
从上面三个回答,可以看出,平衡和创造力模式较精准模式回答内容里存在更多的new bing搜索结果之后它自己的理解内容,三兄弟明显是创造力输入的理解内容更多,最后还给自己辩解一下,说这只是简单的分析,没有人类做的好。这里就多了点人性的味道。
看到这里,基本上可以判断出来,微软不断更新调整的内容,应该就是对调用ChatGPT模型里的参数进行尝试,我们在调用ChatGPT的api时就知道有个参数叫:temperature(温度),这个参数控制的是回答内容的随机性,设置的越低答案越专注,设置的越高,随机性越大。
3. Canva text to image:设计工具
产品链接:https://www.canva.com/
4. Google bard:聊天机器人
产品链接:bard.google.com
5. DeepL:翻译
产品链接:https://www.deepl.com/zh/translator
见下篇:深入浅出AI落地应用分析:全球榜Top10应用(下)