hdu - 4323 - Magic Number - dp + 数据结构优化

题意:http://acm.hdu.edu.cn/showproblem.php?pid=4323

       对于每个询问,输出给定一列数里面与询问的数a编辑距离小于等于b的数。

解:

     dp,编辑距离。

转自Matrix67

 除了字符串匹配、查找回文串、查找重复子串等经典问题以外,日常生活中我们还会遇到其它一些怪异的字符串问题。比如,有时我们需要知道给定的两个字符串“有多像”,换句话说两个字符串的相似度是多少。1965年,俄国科学家Vladimir Levenshtein给字符串相似度做出了一个明确的定义叫做Levenshtein距离,我们通常叫它“编辑距离”。字符串A到B的编辑距离是指,只用插入、删除和替换三种操作,最少需要多少步可以把A变成B。例如,从FAME到GATE需要两步(两次替换),从GAME到ACM则需要三步(删除G和E再添加C)。Levenshtein给出了编辑距离的一般求法,就是大家都非常熟悉的经典动态规划问题。
    在自然语言处理中,这个概念非常重要,例如我们可以根据这个定义开发出一套半自动的校对系统:查找出一篇文章里所有不在字典里的单词,然后对于每个单词,列出字典里与它的Levenshtein距离小于某个数n的单词,让用户选择正确的那一个。n通常取到2或者3,或者更好地,取该单词长度的1/4等等。这个想法倒不错,但算法的效率成了新的难题:查字典好办,建一个Trie树即可;但怎样才能快速在字典里找出最相近的单词呢?这个问题难就难在,Levenshtein的定义可以是单词任意位置上的操作,似乎不遍历字典是不可能完成的。现在很多软件都有拼写检查的功能,提出更正建议的速度是很快的。它们到底是怎么做的呢?1973年,Burkhard和Keller提出的BK树有效地解决了这个问题。这个数据结构强就强在,它初步解决了一个看似不可能的问题,而其原理非常简单。

    首先,我们观察Levenshtein距离的性质。令d(x,y)表示字符串x到y的Levenshtein距离,那么显然:

1. d(x,y) = 0 当且仅当 x=y  (Levenshtein距离为0 <==> 字符串相等)
2. d(x,y) = d(y,x)     (从x变到y的最少步数就是从y变到x的最少步数)
3. d(x,y) + d(y,z) >= d(x,z)  (从x变到z所需的步数不会超过x先变成y再变成z的步数)

    最后这一个性质叫做三角形不等式。就好像一个三角形一样,两边之和必然大于第三边。给某个集合内的元素定义一个二元的“距离函数”,如果这个距离函数同时满足上面说的三个性质,我们就称它为“度量空间”。我们的三维空间就是一个典型的度量空间,它的距离函数就是点对的直线距离。度量空间还有很多,比如Manhattan距离,图论中的最短路,当然还有这里提到的Levenshtein距离。就好像并查集对所有等价关系都适用一样,BK树可以用于任何一个度量空间。

    建树的过程有些类似于Trie。首先我们随便找一个单词作为根(比如GAME)。以后插入一个单词时首先计算单词与根的Levenshtein距离:如果这个距离值是该节点处头一次出现,建立一个新的儿子节点;否则沿着对应的边递归下去。例如,我们插入单词FAME,它与GAME的距离为1,于是新建一个儿子,连一条标号为1的边;下一次插入GAIN,算得它与GAME的距离为2,于是放在编号为2的边下。再下次我们插入GATE,它与GAME距离为1,于是沿着那条编号为1的边下去,递归地插入到FAME所在子树;GATE与FAME的距离为2,于是把GATE放在FAME节点下,边的编号为2。
      
    查询操作异常方便。如果我们需要返回与错误单词距离不超过n的单词,这个错误单词与树根所对应的单词距离为d,那么接下来我们只需要递归地考虑编号在d-n到d+n范围内的边所连接的子树。由于n通常很小,因此每次与某个节点进行比较时都可以排除很多子树。
    举个例子,假如我们输入一个GAIE,程序发现它不在字典中。现在,我们想返回字典中所有与GAIE距离为1的单词。我们首先将GAIE与树根进行比较,得到的距离d=1。由于Levenshtein距离满足三角形不等式,因此现在所有离GAME距离超过2的单词全部可以排除了。比如,以AIM为根的子树到GAME的距离都是3,而GAME和GAIE之间的距离是1,那么AIM及其子树到GAIE的距离至少都是2。于是,现在程序只需要沿着标号范围在1-1到1+1里的边继续走下去。我们继续计算GAIE和FAME的距离,发现它为2,于是继续沿标号在1和3之间的边前进。遍历结束后回到GAME的第二个节点,发现GAIE和GAIN距离为1,输出GAIN并继续沿编号为0到2的边递归下去(那条编号为4的边连接的子树又被排除掉了,在这个图中没有编号为0的边)……
    实践表明,一次查询所遍历的节点不会超过所有节点的5%到8%,两次查询则一般不会17-25%,效率远远超过暴力枚举。适当进行缓存,减小Levenshtein距离常数n可以使算法效率更高。

#include <cstdio>
#include <cstring>
const int MAXN = 1505;

int dp[15][15];
char magic[MAXN][15];
int len[MAXN];
char temp[15];

inline int min(const int &x, const int &y)
{
    return x < y ? x : y;
}

inline int min(const int &x, const int &y, const int &z)
{
    return min(x, min(y, z));
}

int main()
{
    int t, n, m;
    scanf("%d", &t);
    for(int cas=1;cas<=t;++cas)
    {
        scanf("%d%d", &n, &m);
        for(int i=0;i<n;++i)
        {
            scanf("%s", magic[i]);
            len[i] = strlen(magic[i]);
        }
        printf("Case #%d:\n", cas);
        int threshold;
        for(int i=0;i<m;++i)
        {
            scanf("%s%d", temp, &threshold);
            int ans = 0;
            int l = strlen(temp);
            for(int j=0;j<n;++j)
            {
                for(int k=0;k<=l;++k)
                {
                    dp[0][k] = k;
                }
                for(int k=0;k<=len[j];++k)
                {
                    dp[k][0] = k;
                }
                for(int ii=0;ii<len[j];++ii)
                {
                    for(int jj=0;jj<l;++jj)
                    {
                        dp[ii+1][jj+1] = min(dp[ii][jj+1] + 1, dp[ii+1][jj] + 1, dp[ii][jj] + (magic[j][ii] == temp[jj] ? 0 : 1));
                    }
                }
                if(dp[len[j]][l] <= threshold)
                {
                    ++ ans;
                }
            }
            printf("%d\n", ans);
        }
    }
    return 0;
}

BK树模板:

 class BK {
    	int maxn = 12;// 最大距离
        class node {
            node ch[];
            String key;
            int count;
            node(String s) {
                key = s;
                count = 1;
                ch = new node[maxn];
            }
        }
        node root;
        int dp[][] = new int[maxn][maxn];
        int dis(String a, String b) {
            int n = a.length();
            int m = b.length();
            for (int i = 0; i < maxn; i++)
                dp[0][i] = dp[i][0] = i;
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j <= m; j++) {
                    int flag = 1;
                    if (a.charAt(i - 1) == b.charAt(j - 1))
                        flag = 0;
                    dp[i][j] = Math.min(
                            Math.min(dp[i - 1][j], dp[i][j - 1])+1,
                            dp[i - 1][j - 1] + flag);
                }
            }
            return  dp[n][m];
        }
        void init() {
            root = null;
        }
        void insert(String s, node r) {            
            int d = dis(r.key, s);
            if (d == 0){
                r.count++;
                }
            else if(r.ch[d]==null)
                r.ch[d]=new node(s);
            else
                insert(s, r.ch[d]);
        }

        void insert(String s) {
            if(root==null)
                root= new node(s);
            else
            insert(s, root);
        }

        int query(String s, int n) {
            return query(root, s, n);
        }
        int query(node r, String s, int n) {
            int ans = 0;
            if (r == null)
                return 0;
            int d = dis(r.key, s);
            if (d <= n)
                ans += r.count;

            int a = Math.max(d - n, 1), b = Math.min(maxn-1, d + n);
            for (int i = a; i <= b; i++)
                ans += query(r.ch[i], s, n);
            return ans;
        }
    }


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值