题意:http://acm.hdu.edu.cn/showproblem.php?pid=4323
对于每个询问,输出给定一列数里面与询问的数a编辑距离小于等于b的数。
解:
dp,编辑距离。
转自Matrix67
除了字符串匹配、查找回文串、查找重复子串等经典问题以外,日常生活中我们还会遇到其它一些怪异的字符串问题。比如,有时我们需要知道给定的两个字符串“有多像”,换句话说两个字符串的相似度是多少。1965年,俄国科学家Vladimir Levenshtein给字符串相似度做出了一个明确的定义叫做Levenshtein距离,我们通常叫它“编辑距离”。字符串A到B的编辑距离是指,只用插入、删除和替换三种操作,最少需要多少步可以把A变成B。例如,从FAME到GATE需要两步(两次替换),从GAME到ACM则需要三步(删除G和E再添加C)。Levenshtein给出了编辑距离的一般求法,就是大家都非常熟悉的经典动态规划问题。
在自然语言处理中,这个概念非常重要,例如我们可以根据这个定义开发出一套半自动的校对系统:查找出一篇文章里所有不在字典里的单词,然后对于每个单词,列出字典里与它的Levenshtein距离小于某个数n的单词,让用户选择正确的那一个。n通常取到2或者3,或者更好地,取该单词长度的1/4等等。这个想法倒不错,但算法的效率成了新的难题:查字典好办,建一个Trie树即可;但怎样才能快速在字典里找出最相近的单词呢?这个问题难就难在,Levenshtein的定义可以是单词任意位置上的操作,似乎不遍历字典是不可能完成的。现在很多软件都有拼写检查的功能,提出更正建议的速度是很快的。它们到底是怎么做的呢?1973年,Burkhard和Keller提出的BK树有效地解决了这个问题。这个数据结构强就强在,它初步解决了一个看似不可能的问题,而其原理非常简单。
首先,我们观察Levenshtein距离的性质。令d(x,y)表示字符串x到y的Levenshtein距离,那么显然:
1. d(x,y) = 0 当且仅当 x=y (Levenshtein距离为0 <==> 字符串相等)
2. d(x,y) = d(y,x) (从x变到y的最少步数就是从y变到x的最少步数)
3. d(x,y) + d(y,z) >= d(x,z) (从x变到z所需的步数不会超过x先变成y再变成z的步数)
最后这一个性质叫做三角形不等式。就好像一个三角形一样,两边之和必然大于第三边。给某个集合内的元素定义一个二元的“距离函数”,如果这个距离函数同时满足上面说的三个性质,我们就称它为“度量空间”。我们的三维空间就是一个典型的度量空间,它的距离函数就是点对的直线距离。度量空间还有很多,比如Manhattan距离,图论中的最短路,当然还有这里提到的Levenshtein距离。就好像并查集对所有等价关系都适用一样,BK树可以用于任何一个度量空间。
建树的过程有些类似于Trie。首先我们随便找一个单词作为根(比如GAME)。以后插入一个单词时首先计算单词与根的Levenshtein距离:如果这个距离值是该节点处头一次出现,建立一个新的儿子节点;否则沿着对应的边递归下去。例如,我们插入单词FAME,它与GAME的距离为1,于是新建一个儿子,连一条标号为1的边;下一次插入GAIN,算得它与GAME的距离为2,于是放在编号为2的边下。再下次我们插入GATE,它与GAME距离为1,于是沿着那条编号为1的边下去,递归地插入到FAME所在子树;GATE与FAME的距离为2,于是把GATE放在FAME节点下,边的编号为2。
查询操作异常方便。如果我们需要返回与错误单词距离不超过n的单词,这个错误单词与树根所对应的单词距离为d,那么接下来我们只需要递归地考虑编号在d-n到d+n范围内的边所连接的子树。由于n通常很小,因此每次与某个节点进行比较时都可以排除很多子树。
举个例子,假如我们输入一个GAIE,程序发现它不在字典中。现在,我们想返回字典中所有与GAIE距离为1的单词。我们首先将GAIE与树根进行比较,得到的距离d=1。由于Levenshtein距离满足三角形不等式,因此现在所有离GAME距离超过2的单词全部可以排除了。比如,以AIM为根的子树到GAME的距离都是3,而GAME和GAIE之间的距离是1,那么AIM及其子树到GAIE的距离至少都是2。于是,现在程序只需要沿着标号范围在1-1到1+1里的边继续走下去。我们继续计算GAIE和FAME的距离,发现它为2,于是继续沿标号在1和3之间的边前进。遍历结束后回到GAME的第二个节点,发现GAIE和GAIN距离为1,输出GAIN并继续沿编号为0到2的边递归下去(那条编号为4的边连接的子树又被排除掉了,在这个图中没有编号为0的边)……
实践表明,一次查询所遍历的节点不会超过所有节点的5%到8%,两次查询则一般不会17-25%,效率远远超过暴力枚举。适当进行缓存,减小Levenshtein距离常数n可以使算法效率更高。
#include <cstdio>
#include <cstring>
const int MAXN = 1505;
int dp[15][15];
char magic[MAXN][15];
int len[MAXN];
char temp[15];
inline int min(const int &x, const int &y)
{
return x < y ? x : y;
}
inline int min(const int &x, const int &y, const int &z)
{
return min(x, min(y, z));
}
int main()
{
int t, n, m;
scanf("%d", &t);
for(int cas=1;cas<=t;++cas)
{
scanf("%d%d", &n, &m);
for(int i=0;i<n;++i)
{
scanf("%s", magic[i]);
len[i] = strlen(magic[i]);
}
printf("Case #%d:\n", cas);
int threshold;
for(int i=0;i<m;++i)
{
scanf("%s%d", temp, &threshold);
int ans = 0;
int l = strlen(temp);
for(int j=0;j<n;++j)
{
for(int k=0;k<=l;++k)
{
dp[0][k] = k;
}
for(int k=0;k<=len[j];++k)
{
dp[k][0] = k;
}
for(int ii=0;ii<len[j];++ii)
{
for(int jj=0;jj<l;++jj)
{
dp[ii+1][jj+1] = min(dp[ii][jj+1] + 1, dp[ii+1][jj] + 1, dp[ii][jj] + (magic[j][ii] == temp[jj] ? 0 : 1));
}
}
if(dp[len[j]][l] <= threshold)
{
++ ans;
}
}
printf("%d\n", ans);
}
}
return 0;
}
BK树模板:
class BK {
int maxn = 12;// 最大距离
class node {
node ch[];
String key;
int count;
node(String s) {
key = s;
count = 1;
ch = new node[maxn];
}
}
node root;
int dp[][] = new int[maxn][maxn];
int dis(String a, String b) {
int n = a.length();
int m = b.length();
for (int i = 0; i < maxn; i++)
dp[0][i] = dp[i][0] = i;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++) {
int flag = 1;
if (a.charAt(i - 1) == b.charAt(j - 1))
flag = 0;
dp[i][j] = Math.min(
Math.min(dp[i - 1][j], dp[i][j - 1])+1,
dp[i - 1][j - 1] + flag);
}
}
return dp[n][m];
}
void init() {
root = null;
}
void insert(String s, node r) {
int d = dis(r.key, s);
if (d == 0){
r.count++;
}
else if(r.ch[d]==null)
r.ch[d]=new node(s);
else
insert(s, r.ch[d]);
}
void insert(String s) {
if(root==null)
root= new node(s);
else
insert(s, root);
}
int query(String s, int n) {
return query(root, s, n);
}
int query(node r, String s, int n) {
int ans = 0;
if (r == null)
return 0;
int d = dis(r.key, s);
if (d <= n)
ans += r.count;
int a = Math.max(d - n, 1), b = Math.min(maxn-1, d + n);
for (int i = a; i <= b; i++)
ans += query(r.ch[i], s, n);
return ans;
}
}