#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cstring>
using namespace std;
const int N = 100005;
const double MAX = 10e100, eps = 0.00001;
typedef struct TagPoint
{
double x;
double y;
int indx;
}Point;
Point a[N], b[N], c[N];
int merge(Point p[], Point q[], int s, int m, int t)
{
int i, j, k;
for (i=s, j=m+1, k = s; i <= m && j <= t;)
{
if (q[i].y > q[j].y)
p[k++] = q[j], j++;
else
p[k++] = q[i], i++;
}
while (i <= m) p[k++] = q[i++];
while (j <= t) p[k++] = q[j++];
memcpy(q + s, p + s, (t - s + 1) *sizeof(p[0]));
return 0;
}
int cmp_x(const void *p, const void *q)
{
double tmp = ((Point*)p)->x - ((Point*)q)->x;
if (tmp > 0)
return 1;
else if (fabs(tmp) < eps)
return 0;
else
return - 1;
}
int cmp_y(const void *p, const void *q)
{
double tmp = ((Point*)p)->y - ((Point*)q)->y;
if(tmp > 0)
return 1;
else if (fabs(tmp) < eps)
return 0;
else
return - 1;
}
inline double min(double p, double q)
{
return (p > q) ? (q): (p);
}
double dis(Point p, Point q)
{
double x1 = p.x - q.x, y1 = p.y - q.y;
return sqrt(x1 *x1 + y1 * y1);
}
double Closest(Point a[],Point b[],Point c[],int l,int r)
{
if (r - l == 1) return dis(a[l], a[r]);
if (r - l == 2)
{
double x1 = dis(a[l], a[r]);
double x2 = dis(a[l + 1], a[r]);
double x3 = dis(a[l], a[l + 1]);
if (x1 < x2 && x1 < x3) return x1;
else if (x2 < x3) return x2;
else return x3;
}
int i, j, k, m = (l + r) / 2;
double d1, d2;
for (i = l, j = l, k = m + 1; i <= r; i++)
if (b[i].indx <= m) c[j++] = b[i];
//数组c左半部保存划分后左部的点, 且对y是有序的.
else c[k++] = b[i];
d1 = Closest(a, c, b, l, m);
d2 = Closest(a, c, b, m + 1, r);
double d = min(d1, d2);
//数组c左右部分分别是对y坐标有序的, 将其合并到b.
merge(b, c, l, m, r);
for (i = l, k = l; i <= r; i++)
if (fabs(b[i].x - b[m].x) < d) c[k++] = b[i];
//找出离划分基准左右不超过d的部分, 且仍然对y坐标有序.
for (i = l; i < k; i++)
for (j = i + 1; j < k && c[j].y - c[i].y < d; j++)
{
double tmp = dis(c[i], c[j]);
if (tmp < d) d = tmp;
}
return d;
}
int main()
{
int n, i;
double d;
while(EOF != scanf("%d", &n), n)
{
for (i = 0; i < n; ++i)
{
scanf("%lf %lf", &a[i].x, &a[i].y);
}
qsort(a, n, sizeof(a[0]), cmp_x);
for (i = 0; i < n; i++)
{
a[i].indx = i;
}
memcpy(b, a, n * sizeof(a[0]));
qsort(b, n, sizeof(b[0]), cmp_y);
d = Closest(a, b, c, 0, n - 1);
printf("%.2f\n", d);
}
return 0;
}
最近点对模板
最新推荐文章于 2023-10-21 16:36:28 发布