数据聚合和采样

1478 篇文章

已下架不支持订阅

本文介绍了数据聚合和采样的概念及应用。在数据聚合部分,重点讲述了如何使用agg函数进行操作,涉及按不同维度聚合数据。而在数据采样部分,讲解了采样的目的和类型,包括简单随机抽样、无放回抽样与有放回抽样,并强调了采样在统计学和数据挖掘中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第1关:数据聚合

任务描述
本关任务:编写一个对数据进行聚合操作的代码。

相关知识
为了完成本关任务,你需要掌握:
1.了解聚集的概念,
2.使用 agg 函数对数据进行聚合。

聚集
定义:将两个或多个数据对象合并成单个数据对象。

按商店位置、日期、客户对数据聚集;
定量属性通过求和或均值进行聚集;
定性属性可忽略或聚集成一个集合。

import pandas as pd
import numpy as np
pd.set_option('display.max_columns', 100)
pd.set_option

已下架不支持订阅

### GraphSAGE 图采样聚合算法原理 GraphSAGE 是一种用于生成节点嵌入的归纳学习方法,适用于处理大型动态图数据集。该算法的核心在于定义了一个通用框架来高效地从节点的局部邻域中聚合特征信息,进而形成高质量的节点表示[^1]。 #### 节点嵌入生成机制 为了生成某个节点 \( v \) 的嵌入向量,GraphSAGE 需要执行以下操作: - **初始化**:为每个节点分配初始特征向量作为输入。 - **邻居采样**:由于实际场景下的社交网络或其他类型的复杂关系网往往非常庞大,在每轮迭代过程中直接考虑所有相邻节点可能会带来巨大的计算负担。因此,GraphSAGE 提出了仅选取部分最有可能影响当前节点属性变化的关键近邻来进行后续运算的方式——即所谓的“采样”。 ```python sampled_neighbors = sample_neighborhood(node_v, num_samples=k) ``` - **消息传递(Aggregation)**:选定若干个最近邻之后,下一步就是利用这些样本的信息更新中心节点的状态。这一步骤被称为“聚合”,它涉及到如何有效地组合来自不同方向的消息流。常见的策略有均值法、LSTM 法以及池化技术等。 ```python aggregated_features = aggregate(sampled_neighbors_features) ``` - **变换与规范化**:最后,经过一次线性映射加上激活函数的作用后得到新的隐藏状态;再经由某种形式的正则项约束使得最终输出更加稳定可靠。 ```python updated_embedding = transform_and_normalize(aggregated_features) ``` 上述流程构成了单次前馈传播的基础单元,而整个模型则是多层堆叠的结果。每一层都会重复以上三个阶段直到达到预设层数为止[^2]。 #### 应用实例 在推荐系统领域内,GraphSAGE 可被用来预测用户可能感兴趣的商品或服务项目。通过对用户行为模式建模并挖掘潜在关联规则,平台能够提供个性化的内容推送方案。此外,此方法同样适用于社区发现任务,帮助识别具有共同兴趣爱好的群体成员[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值