深入浅出 Python 机器学习:K最近邻算法

本文深入探讨K近邻算法在Python中的应用,包括二分类、多分类和回归分析。通过实例讲解如何使用sklearn库实现KNN算法,并强调理解算法原理的重要性。
摘要由CSDN通过智能技术生成

第1关:使用K近邻算法进行分类

任务描述
本关任务:编写一个能使用K近邻算法进行简单的二分类的小程序。

相关知识
为了完成本关任务,你需要掌握:

什么是K近邻算法
在sklearn中如何使用K最近邻算法
什么是K最近邻算法
在许多机器学习相关的书籍当中,最开始被介绍的算法很多都是K近邻算法。这是因为K近邻算法与机器学习中的其他算法相比有着简单易懂的特点。

机器学习让人真正感到困难的部分其实是它的数学部分,很多数学基础不好的同学在学习机器学习时看见满篇的多元求导恐怕都快疯了吧。这确实是一个无可避免的门槛,虽然很多书都会说不用看数学也可以学会机器学习,但这样学来的知识宛若无根之木,是靠不住的,大家在学习知识的时候一定不能只注重怎么实现,也要注意其背后的原理,知其然而知其所以然才是我们的目标。

# -*- coding: utf-8 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ssaty.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值