给定一个长度为 N 的数列,A1,A2,…AN,如果其中一段连续的子序列 Ai,Ai+1,…Aj 之和是 K 的倍数,我们就称这个区间 [i,j]是 K 倍区间。
你能求出数列中总共有多少个 K倍区间吗?
输入格式
第一行包含两个整数 N 和 K。
以下 N 行每行包含一个整数 Ai。
输出格式
输出一个整数,代表 K 倍区间的数目。
数据范围
1≤N,K≤100000,
1≤Ai≤100000
输入样例:
5 2
1
2
3
4
5
输出样例:
6
解析:
推导得,(a-b)%k==0 等价于 a%k==b%k 所以遍历一遍,统计当前这个点前面有多少个相同余数的点, res加上即可,同时如国本来就是余数为0说明本来符合题意,额外加一个 1
代码:
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
long long n,k,sum[N],res,t,a[N];
int main(){
cin>>n>>k;
for(int i=1;i<=n;i++){
scanf("%d",&t);
sum[i]=t+sum[i-1]; //计算前缀和
}
for(int i=1;i<=n;i++){
sum[i]%=k;
res+=a[sum[i]]; //加上这个点前面的点统计的
if(sum[i]==0) res+=1; //如果这个区间本来就是 K 倍区间,则 +1
a[sum[i]]++; //加上这个点
}
cout<<res;
return 0;
}