输入样例:
7
3 1 2 1 8 5 6
输出样例:
4
解析:
当遍历到某个数时,它的最长上升子序列即为它前面的、小于它的所有数的最长长度+1,
此为,如果没有则为 1 。
所以,可以遍历它前面的每个数的最长长度即可,复杂度为O(n^2)
#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int n,a[N],dp[N],res;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
cin>>a[i];
int t=0;
for(int j=i-1;j>0;j--)
if(a[i]>a[j]) t=max(t,dp[j]);
dp[i]=max(1,t+1);
res=max(res,dp[i]);
}
cout<<res;
return 0;
}
但是,如果我们把 N 提升到 1e5 呢,那么O(n^2)肯定超时,所以必须优化。
假设序列为 1,2,7,4,6 , 当我们遍历到 4 结束后,目前的最长上升子序列为两个,分别为 1,2,7 和 1,2,4,之后当我们遍历 6 时,我们可以发现 6 只能和第二种情况组合,而不能与第一种情况组合,所以舍弃掉1,2,7。
由此,我们当遍历某个数 x 时,可以找到当前最长子序列中第一个大于 x 的数,并且替换他,如果不存在,则将 x 加到末尾。
并且,维护的子序列单调递增,所以可以二分查找,此时复杂度为O(nlogn)
#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,a[N],q[N];
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++) scanf("%d",&a[i]);
int len=0;
q[0]=-2e9;
for(int i=0;i<n;i++){
int l=0,r=len;
while(l<r){
int mid=l+r+1>>1;
if(q[mid]<a[i]) l=mid;
else r=mid-1;
}
len=max(len,l+1);
q[l+1]=a[i];
}
cout<<len;
return 0;
}