最长上升子序列(线性DP)

输入样例:

7
3 1 2 1 8 5 6

输出样例:

4

 解析:

        当遍历到某个数时,它的最长上升子序列即为它前面的、小于它的所有数的最长长度+1,

此为,如果没有则为 1 。

        所以,可以遍历它前面的每个数的最长长度即可,复杂度为O(n^2)

#include<bits/stdc++.h>
using namespace std;
const int N=1010;
int n,a[N],dp[N],res;
int main(){
	scanf("%d",&n);
	for(int i=1;i<=n;i++){
		cin>>a[i];
		int t=0;
		for(int j=i-1;j>0;j--)
			if(a[i]>a[j]) t=max(t,dp[j]);
		dp[i]=max(1,t+1);
		res=max(res,dp[i]);
	}
	cout<<res;
	return 0;
} 

        但是,如果我们把 N 提升到 1e5 呢,那么O(n^2)肯定超时,所以必须优化。

        假设序列为  1,2,7,4,6 , 当我们遍历到 4 结束后,目前的最长上升子序列为两个,分别为 1,2,7 和 1,2,4,之后当我们遍历 6 时,我们可以发现 6 只能和第二种情况组合,而不能与第一种情况组合,所以舍弃掉1,2,7。

        由此,我们当遍历某个数 x 时,可以找到当前最长子序列中第一个大于 x 的数,并且替换他,如果不存在,则将 x 加到末尾。

        并且,维护的子序列单调递增,所以可以二分查找,此时复杂度为O(nlogn)

       

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+5;
int n,a[N],q[N];
int main(){
    scanf("%d",&n);
    for(int i=0;i<n;i++) scanf("%d",&a[i]);
	int len=0;
	q[0]=-2e9;
	for(int i=0;i<n;i++){
		int l=0,r=len;
		while(l<r){
			int mid=l+r+1>>1;
			if(q[mid]<a[i]) l=mid;
			else r=mid-1;
		}
		len=max(len,l+1);
		q[l+1]=a[i];
	}
	cout<<len;
    return 0; 
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值