自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(546)
  • 收藏
  • 关注

原创 一切都会好的

一切都会好的,我一直相信 —— 24.3.3

2024-03-03 21:59:29 460 1

原创 【LangChain大模型应用与多智能体开发 ② 接入智谱AI】

本文摘要: 文章详细介绍了智谱AI的GLM-4大模型及其在LangChain中的集成方法。GLM-4作为新一代基座模型,在性能、长文本处理和多模态能力上显著提升,支持复杂任务自动规划和工具调用。主要内容包括:1) GLM-4的基础能力、指令跟随、对齐能力和多模态表现;2) 通过Python SDK调用智谱API的完整流程;3) 在LangChain中封装自定义ZhipuAIGLM4类的实现细节,涵盖类定义、核心方法封装(invoke/stream)及与LangChain的兼容适配;4) 提供完整的调用示例代

2025-05-24 17:50:00 1067

原创 【LangChain大模型应用与多智能体开发 ① 初识LangChain 】

LangChain是一个开源框架,旨在帮助开发者使用大型语言模型(LLMs)和聊天模型构建端到端的应用程序,它提供了一套工具、组件和接口,以简化创建由这些模型支持的应用程序的过程。LangChain的核心概念包括组件(Components)、链(Chains)、模型输入/输出(Model I/O),数据连接(Data Connection)、内存(Memory)和代理(Agents)等。

2025-05-23 21:48:23 1028

原创 【Python 算法零基础 4.排序 ⑤ 归并排序】

从索引0到n-1n为数组长度)。假设当前索引i为最小值索引min_index。从i+1到n-1遍历,若找到更小元素,则更新min_index。若,则交换arr[i]与。从索引1到n-1。将arr[i]存入current。从已排序部分的末尾(索引j = i-1)向前扫描,将比current大的元素后移。直到找到第一个不大于current的位置或扫描完所有元素。将current放入j+1位置。设数组长度为n。遍历i从0到n-1(共n轮)。对于每轮i,遍历j从0到n-i-2。若,则交换两者。

2025-05-23 18:01:55 989

原创 【NLP 77、Python环境管理工具之conda】

conda是一个开源的包管理系统和环境管理系统,主要用于Python语言,但也可以用于其它语言的项目。

2025-05-22 17:01:52 994

原创 【Python 算法零基础 4.排序 ④ 计数排序】

从索引0到n-1n为数组长度)。假设当前索引i为最小值索引min_index。从i+1到n-1遍历,若找到更小元素,则更新min_index。若,则交换arr[i]与。设数组长度为n。遍历i从0到n-1(共n轮)。对于每轮i,遍历j从0到n-i-2。若,则交换两者。重复步骤 2-4,直到所有轮次完成。从索引1到n-1。将arr[i]存入current。从已排序部分的末尾(索引j = i-1)向前扫描,将比current大的元素后移。直到找到第一个不大于current的位置或扫描完所有元素。将current。

2025-05-22 12:38:34 917

原创 【Python 算法零基础 4.排序 ③ 插入排序】

从未排序序列开始,初始时整个数组都是未排序的。遍历未排序部分的所有元素,找到其中的最小值。使用变量min记录最小值的索引,初始时假设当前未排序部分的第一个元素是最小的。将找到的最小值与未排序部分的第一个元素交换位置。此时,未排序部分的第一个元素成为已排序序列的一部分。缩小未排序部分的范围(从下一个元素开始),重复寻找最小值并交换的过程,直到整个数组排序完成。①获取数组长度n。遍历i从0到n-1,共进行n轮。:每轮确定一个最大元素的位置(第i轮确定倒数第i+1大的元素)。对于每轮i,遍历j从0到n-i-1。

2025-05-20 22:08:49 740

原创 【NLP 76、Faiss 向量数据库】

生成等间隔数值序列(类似 Pythonrange参数类型描述startintfloat起始值(默认0stopintfloat结束值(不包含)stepintfloat步长(默认1生成等间隔数值序列(类似 Pythonrange参数类型描述startintfloat起始值(默认0stopintfloat结束值(不包含)stepintfloat步长(默认1设置随机数生成器的种子,确保结果可复现。参数类型描述seedint随机种子# 1.1 定义数据和向量维度。

2025-05-20 20:44:04 1611

原创 【Python 算法零基础 4.排序 ② 冒泡排序】

从未排序序列开始,初始时整个数组都是未排序的。:遍历未排序部分的所有元素,找到其中的最小值。使用变量min_idx记录最小值的索引,初始时假设当前未排序部分的第一个元素是最小的。将找到的最小值与未排序部分的第一个元素交换位置。此时,未排序部分的第一个元素成为已排序序列的一部分。:缩小未排序部分的范围(从下一个元素开始),重复寻找最小值并交换的过程,直到整个数组排序完成。

2025-05-19 20:26:19 1420

原创 【NLP 75、如何通过API调用智谱大模型】

本文介绍了基于智谱AI大模型的多Agent文章优化系统。该系统通过调用智谱API(如ChatGLM、GLM-3-Turbo等模型),实现了从主题分析、语言优化、内容丰富到可读性评估的全流程自动化处理。系统包含多个专用Agent模块,每个模块负责特定优化任务:主题分析Agent提取文章核心思想,语言优化Agent改进语法用词,内容丰富Agent提供扩展建议,可读性Agent评估传播效果。最终由综合优化Agent整合所有建议生成优化版本。文章以游戏《黑神话:悟空》的分析文本为例,展示了完整的优化流程和代码实现,

2025-05-18 21:51:05 450

原创 【Python 算法零基础 4.排序 ① 选择排序】

即使我们的计算机速度超快,并且可以在1秒内计算 10^8 次操作,但选择排序仍需要大约一百秒才能完成。6 是最大的整数,对于数组中的其他整数,6 至少是数组中其他元素的两倍。6 的下标是 1 ,所以返回 1。进行排序,选择排序的时间复杂度为 O ((m+n)²),其中 m 和 n 分别是两个数组的长度。选择排序后的列表(数组)应遵守小(大)的在前,大(小)的在后的升(降)序顺序。对它们进行排序,使得相同颜色的元素相邻,并按照红色、白色、蓝色顺序排列。,存放到排序序列的起始位置,然后,再从。

2025-05-18 20:13:00 1103

原创 【Python 算法零基础 3.递推】

长度为 n(1 ≤ n < 40)的只由“A"、"C"、"M"三种字符组成的字符串,可以只有其中一种或两种字符,但绝对不能有其他字符,且禁止出现 M 相邻的情况,问这样的串有多少种?递推 —— 递推最通俗的理解就是数列,递推和数列的关系就好比 算法 和 数据结构 的关系,数列有点像数据结构中的线性表(可以是顺序表,也可以是链表,一般情况下是顺序表),而递推就是一个。T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2。

2025-05-17 17:35:10 1015

原创 【NLP 74、最强提示词工程 Prompt Engineering 从理论到实战案例】

所谓的提示词其实就是一个提供给模型的文本片段,用于指导模型生成特定的输出或回答。提示词的目的是为模型提供一个任务的上下文,以便模型能够更准确地理解用户的意图,并生成相关的回应所谓提示工程也可以被称为【指令工程】,提示工程的核心思想是:通过精心设计的提示词,可以显著提高模型的性能和输出质量。Prompt是AGI时代的【编程语言】提示工程师是AGI时代的【程序员】如果要学好提示工程,其实就是要知道如何对提示词Prompt进行调优,与大模型进行更好的交互。

2025-05-15 16:30:00 997

原创 【Python 算法零基础 2.模拟 ⑦ 实战】

② 因为n为二进制数字,所以每次遍历n时整除2,然后因为二进制上只有0 和 1,而 sum + 0 不会改变sum的值,所以直接用 sum + n % 2,即可得到每位1的个数。① 遍历数组nums,从遍历 i 处索引分割数组, 如果索引 i 处左边元素求和 sum(:i) == 索引 i 处右边元素求和 sum(i + 1:),则返回索引 i。② 将 a - b 赋值给 b,此时 a = a+b,a - b = a,b = a。③ 将 a - b 赋值给 a,此时 a = a +b, b = a。

2025-05-15 15:55:01 777

原创 【Python 算法零基础 2.模拟 ⑥ 算法技巧】

由于 num1 < num2 ,num2 减 num1 得到 num1 = 2 ,num2 = 3 - 2 = 1。由于 num1 == num2 ,num1 减 num2 得到 num1 = 10 - 10 = 0。- 操作 3 :num1 = 1 ,num2 = 1。由于 num1 == num2 ,num1 减 num2。- 操作 2 :num1 = 2 ,num2 = 1。- 第 1 秒,内存条 2 被占用 1 位内存,内存条 2 现在有 10 位剩余可用内存。

2025-05-15 14:29:41 910

原创 大数据开发 hadoop集群 3.Hadoop运行环境搭建

hadoop的安装包从Ubuntu自带的火狐浏览器直接下载。开启NameNode和DataNode的守护进程。直接复制粘贴在浏览器打开,勾选合适的选项进行下载。用国内的镜像下载(Ubuntu自带的火狐浏览器)执行namenode的格式化,指定磁盘容量大小(推荐大小)Hadoop伪分布式配置。

2025-05-14 22:30:01 128

原创 【Python 算法零基础 2.模拟 ④ 基于矩阵】

本文介绍了多个基于矩阵的算法问题及其解决方案。首先,2120题要求根据机器人的起始位置和指令序列,计算从每条指令开始执行时机器人能执行的指令数量。1252题涉及对矩阵进行增量操作后,统计奇数值单元格的数量。832题要求对二进制矩阵进行水平翻转和反转操作。657题通过判断机器人的移动序列是否使其返回原点。289题模拟生命游戏,根据细胞状态更新矩阵。59题生成一个螺旋排列的n×n矩阵。885题则要求在网格中按螺旋顺序访问所有位置。这些问题展示了矩阵在算法中的广泛应用,涵盖了模拟、统计、翻转和生成等多种操作。

2025-05-14 22:21:43 1521 1

原创 【NLP 72、Prompt、Agent、MCP、function calling】

大模型 Agent 是指基于大型预训练模型(如 GPT-3、GPT -4、文心一言、通义千问等)构建的智能体,能够理解和生成自然语言。它以大型语言模型作为核心计算引擎,利用模型的语言理解、生成和推理能力,结合自主性、交互性、反应性和主动性等特点,使 AI 能够更加智能地应对各种任务,可看作是能够思考与行动的 “智能助手”,不仅理解需求,还能主动提供解决方案并付诸实践。

2025-05-13 13:08:02 1696

原创 【Python 算法零基础 2.模拟 ⑤ 基于栈和队列】

本文介绍了两个基于栈和队列的算法问题及其解决方案。第一个问题是通过栈操作构建目标数组,利用栈的“Push”和“Pop”操作,根据给定的目标数组和整数n,生成相应的操作序列。算法通过遍历1到n的数字,判断是否在目标数组中,依次添加“Push”或“Push”+“Pop”操作,最终返回操作序列。第二个问题是计算无法吃午餐的学生数量,利用队列和三明治栈的匹配机制,统计学生对三明治的需求,并遍历三明治供应顺序,分配三明治。若某类三明治需求为0,则返回剩余学生数量。两个问题均通过简单的数据结构和逻辑判断,高效解决了实际

2025-05-11 20:59:28 1100

原创 【NLP 71、常见大模型的模型结构对比】

2025-05-08 23:15:02 574

原创 算法训练营 Day1

是一个内置的高阶函数,它的主要作用是对可迭代对象(如列表、元组等)中的每个元素应用指定的函数,并返回一个迭代器,该迭代器会生成函数应用后的结果。给你⼀个数组 nums 和⼀个值 val ,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新⻓度。给你⼀个 升序排列 的数组 nums ,请你 原地 删除重复出现的元素,使每个元素 只出现⼀次 ,返回删除后数组的。将不重复的元素放入数组的前面,并返回新变量的值,即为最终删除数组后的剩余数量。你不需要考虑数组中超出新⻓度后⾯的元素。

2025-04-25 23:04:46 1128

原创 【NLP 70、全网最详细提示词工程优化 Prompt Engineering】

提示词(Prompt)是引导LLM进行内容生成的命令。它可以是任何内容:一句话、一个问题、或者一个计算公式。当LLM收到提示词后便开始根据提示词和之前训练的数据,生成相关的回应。提示词工程(Prompt Engineering)是有技巧的使用提示词,从而最大限度地提高LLM相应的有效性、准确性和实用性。“工程”二字表示了这是一个持续的、不断迭代优化的过程。

2025-04-23 21:35:20 1161

原创 【NLP 69、KG-BERT】

维度KG-BERTR-BERT核心任务知识图谱补全(三元组分类、链接预测)关系抽取(实体间语义关系分类)输入设计三元组序列化,融合实体描述文本显式标记实体位置,提取实体向量关键技术BERT+知识图谱融合、负样本生成实体标记符、多特征融合应用领域问答系统、推荐系统、语义搜索社交网络分析、医学文本挖掘、事件抽取性能指标在WN11、FB15K等数据集达到SOTASemEval-2010 Task 8的F1值89.25%

2025-04-21 21:13:49 785

原创 【NLP 68、R-BERT】

维度KG-BERTR-BERT核心任务知识图谱补全(三元组分类、链接预测)关系抽取(实体间语义关系分类)输入设计三元组序列化,融合实体描述文本显式标记实体位置,提取实体向量关键技术BERT+知识图谱融合、负样本生成实体标记符、多特征融合应用领域问答系统、推荐系统、语义搜索社交网络分析、医学文本挖掘、事件抽取性能指标在WN11、FB15K等数据集达到SOTASemEval-2010 Task 8的F1值89.25%

2025-04-21 21:10:38 1135

原创 【NLP 67、知识图谱】

知识图谱是一种揭示实体之间关系的语义网络,可以对现实世界的事物及其相互关系进行形式化地描述。存储一些结构化数据现在的知识图谱已被用来泛指各种大规模的知识库如何决定哪些是实体,哪些是属性,哪些是关系?—— 取决于图谱的使用方式和想要完成的任务。

2025-04-21 18:23:54 787

原创 【NLP 62、实践 ⑮、基于RAG + 智谱语言模型的Dota2英雄故事与技能介绍系统】

_init__用户传入的提示词(如 “请分析这篇作文的主题”),指导模型执行任务ZhipuAI客户端实例,用于发起 API 请求,api_key需从智谱 AI 官网申请指定使用智谱 AI 的模型(支持对话式交互)。输入格式为列表,每个元素是包含role(角色,此处为user)和content(内容,即prompt)的字典,符合智谱 AI 对话模型的输入规范。模型返回的原始响应。提取第一个生成结果的文本内容。

2025-04-20 20:29:26 1148

原创 【NLP 60、实践 ⑭ 使用bpe构建词表】

字典的键是由两个元素组成的元组(表示被合并的元素对),值是合并后生成的新元素的索引(从。字典的键是由两个元素组成的元组(表示被合并的元素对),值是合并后生成的新元素的索引。字典的键是元素对(以元组形式表示),值是该元素对出现的次数。字典的键是元素对(以元组形式表示),值是该元素对出现的次数。中出现次数最多的相邻元素对,这个元素对将在本次合并操作中被合并为一个新的元素。字典的键(是一个元组),表示在之前的合并操作中被合并的两个元素对应的索引。从给定的可迭代对象(如列表、元组、集合等)中返回最大的元素。

2025-04-20 19:37:08 694

原创 【NLP 65、实践 ⑯ 基于Agent优化文章】

用户传入的提示词(如 “请分析这篇作文的主题”),指导模型执行任务ZhipuAI客户端实例,用于发起 API 请求,api_key需从智谱 AI 官网申请指定使用智谱 AI 的模型(支持对话式交互)。输入格式为列表,每个元素是包含role(角色,此处为user)和content(内容,即prompt)的字典,符合智谱 AI 对话模型的输入规范。模型返回的原始响应。提取第一个生成结果的文本内容。

2025-04-19 14:21:40 1143

原创 【NLP 66、实践 ⑰ 基于Agent + Prompt Engineering文章阅读】

用户传入的提示词(如 “请分析这篇作文的主题”),指导模型执行任务ZhipuAI客户端实例,用于发起 API 请求,api_key需从智谱 AI 官网申请指定使用智谱 AI 的模型(支持对话式交互)。输入格式为列表,每个元素是包含role(角色,此处为user)和content(内容,即prompt)的字典,符合智谱 AI 对话模型的输入规范。模型返回的原始响应。提取第一个生成结果的文本内容。

2025-04-19 14:21:36 1529 2

原创 【NLP 64、基于LLM的垂直领域【特定领域】问答方案】

基于以下已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。你是一个保险公司问答机器人,请根据用户输入的问题,判断该问题属于下列的哪类问题,输出类别序号: 1.个人保单业务相关问题 2.金管家操作问题 3.保险相关名词解释问题;② 随着LLM能力的增强,可以接受的prompt长度越来越长(claude-100k等),对于段落召回的要求会越来越低,所以内容都可以放在输入里。

2025-04-17 21:35:19 808

原创 【NLP 63、大模型应用 —— Agent】

在生成对话时,要求模型忠实于人物的愿望和要求,充分考虑角色的情感和思维能力,想象角色在特定场景下的言行。不同的Agent可以是同一个大语言模型,只是传入他们的。例如,若用户请求 “分析一张图片中不同物体,并生成一段描述”,ChatGPT 会将其分解为目标检测、图像描述等子任务,并确定目标检测需先执行,因为图像描述依赖检测出的物体信息。:区别于普通提示驱动的代理,Character-LLM 通过训练学习特定角色的经历、特征和情感,能以特定人物(如贝多芬、凯撒等)的身份进行对话,无需额外提示或参考文档。

2025-04-17 19:49:18 883

原创 【NLP 面经 10 大模型微调的七种方法】

方法,我们无需直接修改模型现有的大量权重,相反,只需在模型的关键部分引入低秩矩阵,并通过这些矩阵的乘积来进行有效的权重调整。在P-Tuning中,LSTM模型的参数可以在多个任务之间共享,这提高了模型的泛化能力,并减少了针对每个单独任务的训练需求。而在提示调整中,每个任务通常都有其独立的虚拟标记嵌入,这可能限制了跨任务泛化的能力。这样,在模型微调时,可训练的参数量增加了,P-Tuning v2在应对复杂的自然语言理解(NLU)任务和小型模型方面,相比原始P-Tuning具有更出色的效能。

2025-04-17 10:39:16 913

原创 【NLP 61、大模型应用 —— RAG方法】

输入一个问题先进行检索,检索出文章后让大模型回答是否输入的问题与检索的文章之间存在相关性。如果模型认为有相关性。出一个答案,进行生成最终的答案(其实是大语言模型从相关文档中进行转述出的结果),提高回答准确率。从根节点寻找,哪个子节点的总结与问题更加接近,就逐层寻找其子节点总结与问题的相似度。在查找时,传入每段文本的摘要,通过摘要的内容,让模型决定需不需要展开看到整段文本。先从外部知识库检索与问题相关的文档,再基于检索结果生成更准确的答案。,就去本地知识库中做检索,再由大语言模型预测答案是否与问题相关;

2025-04-16 21:26:50 1083

原创 【NLP 59、大模型应用 —— 字节对编码 bpe 算法】

既不是分字,也不是分词,是介于字与词之间的一种东西,我们称之为 token,大语言模型可以把一个字切分为多个token,也可能把多个字当成一个token,这些token本质上是由训练数据通过统计算法得到。最终符号表包含原始字符和合并生成的新符号(如 "lo", "er", "new" 等),数据被转换为符号序列。"er" 出现 2 次("lower" 和 "newer"),若 "er" 是最高频对(频率 2),合并后新符号为 "er",数据转换为。"lo" 出现 2 次("low" 和 "lower"),

2025-04-12 22:07:08 635

原创 【NLP 58、利用trl框架训练LLM】

TRL 是一个利用监督微调(SFT)、近端策略优化(PPO)和直接偏好优化(DPO)等先进技术后训练基础模型的尖端库。构建在生态系统之上,TRL 支持多种模型架构和模态,并且可以跨各种硬件配置进行扩展。

2025-04-11 12:23:05 1045

原创 【NLP 57、LLM通用能力评价方式】

目前,我们通过一些特殊的“集合”来评价大语言模型效果。

2025-04-09 21:16:14 468

原创 【NLP 面经 9 逐层分解Transformer】

1.Transformer 与 RNN 不同,可以比较好的并行训练。2.Transformer 本身是不能利用单词的顺序信息的。因此需要在输入中添加位置 Embedding,否则 Transformer 就是一个词袋模型了。3.Transformer 的重点是 Self-Attention 结构,其中用到的 Q、K、V 矩阵通过输出进行线性变换得到。

2025-04-09 17:52:36 1710

原创 【NLP 面经 8】

模型在处理含有隐喻、讽刺等复杂语言表达的文本时,情感判断准确率较低,并且在处理长文本时,性能下降明显。请从模型架构、训练数据和超参数调整三个方面分析可能的原因,并提出相应的改进措施。模型生成的文本有时会出现逻辑跳跃、连贯性差的问题,并且在生成多样化内容时,难以平衡多样性与合理性。请从模型架构、训练数据和生成策略这三个方面分析可能的原因,并提出相应的改进措施。计算向量或矩阵的范数(如 L1、L2、无穷范数),支持按行或列计算,适用于数据归一化或相似度计算。学习数据的统计特征(如词频、IDF 值),再通过。

2025-04-08 22:19:25 901 2

原创 【NLP 面经 6】

在自然语言处理的文本摘要任务中,你使用基于 Transformer 的生成式模型。生成的摘要出现信息重点把握不准、关键信息遗漏,并且在生成较长文本的摘要时,结构不清晰、逻辑连贯性。

2025-04-08 21:37:50 765 2

原创 【NLP 55、强化学习与NLP】

强化学习和有监督学习是机器学习中的两种不同的学习范式目标是让智能体通过与环境的交互,学习到一个最优策略以最大化长期累积奖励。不告诉具体路线,首先去做,做了之后,由环境给你提供奖励,根据奖励的多少让模型进行学习,最终找到正确路线在机器人导航任务中,智能体需要学习如何在复杂环境中移动,以最快速度到达目标位置,同时避免碰撞障碍物,这个过程中智能体要不断尝试不同的行动序列来找到最优路径。旨在学习一个从输入特征到输出标签的映射函数,通常用于预测、分类和回归等任务。

2025-04-08 11:13:44 1220

【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

【NLP 66、实践 ⑰ 基于Agent + Prompt优化进行文章优化】

2025-04-18

【NLP 58、利用trl框架训练LLM】

trl框架训练大语言模型,提供了源码

2025-04-10

【NLP 29、项目 Ⅰ:电商评论分类(好评 / 差评) 】

多个模型结构训练效果对比

2025-03-10

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除