【题目描述】
原题来自:CQOI 2005
重庆城里有 n 个车站,m 条双向公路连接其中的某些车站。每两个车站最多用一条公路连接,从任何一个车站出发都可以经过一条或者多条公路到达其他车站,但不同的路径需要花费的时间可能不同。在一条路径上花费的时间等于路径上所有公路需要的时间之和。
佳佳的家在车站 1,他有五个亲戚,分别住在车站 a,b,c,d,e。过年了,他需要从自己的家出发,拜访每个亲戚(顺序任意),给他们送去节日的祝福。怎样走,才需要最少的时间?
【输入】
第一行:n,m 为车站数目和公路的数目。
第二行:a,b,c,d,e 为五个亲戚所在车站编号。
以下 m 行,每行三个整数 x,y,t,为公路连接的两个车站编号和时间。
【输出】
输出仅一行,包含一个整数 T,为最少的总时间。
【输入样例】
6 6
2 3 4 5 6
1 2 8
2 3 3
3 4 4
4 5 5
5 6 2
1 6 7
【输出样例】
21
【提示】
数据范围:
对于全部数据,1≤n≤50000,1≤m≤105,1<a,b,c,d,e≤n,1≤x,y≤n,1≤t≤100。
解析:
最短路Dijkstra打表,DFS暴搜五个点。
#include<bits/stdc++.h>
using namespace std;
const int N=5e4+5;
const int INF=0x3f3f3f3f;
int n,m,dis[N],vis[N],t,f[N],d[6][N];
struct edge{int to,w;};
struct node{
int id;
double dis;
bool operator<(const node& a)const{return a.dis<dis;}
};
vector<edge>e[N];
void Dijkstra(int s,int dis[]){
int done[N];
priority_queue<node>q;
for(int i=1;i<=n;i++) dis[i]=INF,done[i]=0;
q.push({s,0});
dis[s]=0;
while(q.size()){
node u=q.top();
q.pop();
if(done[u.id]) continue;
done[u.id]=1;
for(int i=0;i<e[u.id].size();i++){
edge x=e[u.id][i];
if(done[x.to]) continue;
if(dis[x.to]>x.w+u.dis){
dis[x.to]=x.w+u.dis;
q.push({x.to,dis[x.to]});
}
}
}
}
int dfs(int u,int sum,int start){
if(u==6){
return sum;
}
int res=INF;
for(int i=1;i<=5;i++){
if(!vis[i]){
vis[i]=1;
res=min(dfs(u+1,sum+d[start][f[i]],i),res);
vis[i]=0;
}
}
return res;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=5;i++) scanf("%d",&f[i]);
for(int i=0;i<m;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
e[a].push_back({b,c});
e[b].push_back({a,c});
}
f[0]=1;
for(int i=0;i<=5;i++){
Dijkstra(f[i],d[i]);
}
cout<<dfs(1,0,0);
return 0;
}