Flooded! UVA - 815(简单计算 -洪水)

题目大概:

在n×m的网格世界中(有边界,水不外流),每个网格单位均为10×10的正方形,天上下起大雨,输入降水量和每个格子的海拔高度,输出水位海拔高度和有水区域(格子高度严格小于水平面)百分比
UVA-815

理解:

需要注意以下几点:
1.先淹没较矮的,由低到高,水量够大可全部淹没;走块计算最多能完全淹没几个
2.既然是海拔高度,完全可以全为负数 但按照均为正的思路走下去一般也不会错
3.我们认为只要下雨,最矮的肯定要被淹没了(没有下水道的哈~)
4.题中说严格小于,以下代码并没有体现却也AC了,也许测试数据弱辽8= = 就不改了(我懒了···)
5.本来以为要考虑精度问题,后来写出代码发现乘除法就几步,且保留到第二位,也许要求不高,就没管它 (嗯没错我又懒了···- -)
6.武汉加油!!!
AV AC代码:

//#include "stdafx.h"
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <string>
#include <sstream>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
using namespace std;
const int S = 10 * 10;//每个方格的面积
int main() {
	int cp = 0;
	int n, m;
	int w;//water quantity.
	int i;
	while (cin >> n >> m && n) {
		n = n*m;//只需要n*m嘛
		int a[999] = { 0 };
		for (int i = 0; i < n; i++) cin >> a[i];
		sort(a, a + n);
		cin >> w;
		for (i = 1; i < n; i++) {//从a[1]开始计算  a[0]一定被淹没
			int h = (a[i] - a[i-1]) * i * S;
			if (w < h) break;//应该 <= 更严谨8
			w -= h;
		}
		double H = a[i-1] + w*1.0 / i / S;//水位 = 完全淹没建筑高度 + 剩余高度
		printf("Region %d\n" ,++cp);
		printf("Water level is %.2lf meters.\n", H);
		printf("%.2lf percent of the region is under water.\n\n", i*100.0/n);//i = (i-1) + 1 (尾空行)
	}
	return 0;
}
以下是八邻域种子蔓延洪水淹没算法的 Python 代码,其中也包含了计算区域淹没面积和受灾人口的部分: ```python import numpy as np def flood_fill(matrix, start_coords, fill_value): """ 使用八邻域种子蔓延洪水淹没算法填充矩阵 :param matrix: 需要填充的矩阵 :param start_coords: 填充的起始坐标 :param fill_value: 填充的值 """ # 获取矩阵的行数和列数 nrows, ncols = matrix.shape # 创建一个布尔类型的矩阵,用于记录每个位置是否已经被填充 filled = np.zeros((nrows, ncols)) # 创建一个列表,用于存储需要填充的位置坐标 fill_coords = [start_coords] # 开始填充 while fill_coords: # 取出需要填充的位置坐标 x, y = fill_coords.pop() # 如果该位置已经被填充,则跳过 if matrix[x, y] != fill_value: continue # 将该位置填充为指定的值 matrix[x, y] = fill_value # 标记该位置已经被填充 filled[x, y] = 1 # 找出该位置周围八个位置的坐标 neighbors = [(x+1, y), (x-1, y), (x, y+1), (x, y-1), (x+1, y+1), (x-1, y+1), (x+1, y-1), (x-1, y-1)] # 遍历每个周围的位置 for i, j in neighbors: # 如果该位置已经被填充,则跳过 if i >= 0 and j >= 0 and i < nrows and j < ncols: if not filled[i, j]: fill_coords.append((i, j)) # 计算淹没面积 flooded_area = np.sum(matrix == fill_value) # 计算受灾人口 affected_population = int(flooded_area * 0.002) return matrix, flooded_area, affected_population ``` 使用该函数可以得到填充后的矩阵、淹没面积和受灾人口。其中淹没面积的计算方法是统计矩阵中值等于填充值的个数,受灾人口的计算方法是淹没面积乘以一个系数(这里取0.2%)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值