两个熊孩子在n*m的平地上放火玩,#表示草,两个熊孩子分别选一个#格子点火,火可以向上向下向左向右在有草的格子蔓延,点火的地方时间为0,蔓延至下一格的时间依次加一。求烧完所有的草需要的最少时间。
Input
第一行,输入一个T,表示有T组测试数据。 每组数据包含n,m分别表示行和列
1 <= T <=100, 1 <= n <=10, 1 <= m <=10
Output
输出最少需要的时间,如不能烧完输出-1
Sample Input
4
3 3
.#.
.#.
3 3
.#.
#.#
.#.
3 3
…
#.#
…
3 3
…#
#.#
Sample Output
Case 1: 1
Case 2: -1
Case 3: 0
Case 4: 2
FZU挂了好久做完一直没法交,今天终于可以啦。
言归正传,两个孩子可以分别选择1个草坪点火,其实就是两个起点的搜索啦,因为要求最短时间,首选宽搜。
博主做法有些直接了,四重循环遍历所有起点,标记去重,然后搜索:
const int INF = 0x3f3f3f3f;
const int dx[] = {0, 0,1,-1};
const int dy[] = {1,-1,0, 0};
struct P {
int x, y;
P(int x = 0, int y = 0): x(x), y(y) {}
};
char s[15][15];
int d[15][15];
int r, c;
inline bool in_border(int mx, int my) {
return mx>=0 && mx<r && my>=0 && my<c;
}
int bfs(int r1, int c1, int r2, int c2) {
memset(d, INF, sizeof(d));
d[r1][c1] = d[r2][c2] = 0;
queue<P> q;
q.push(P(r1, c1));
q.push(P(r2, c2));
while(!q.empty()) {
P tmp = q.front(); q.pop();
for(int i = 0; i < 4; i++) {
int mx = tmp.x + dx[i], my = tmp.y + dy[i];
if(!in_border(mx, my) || s[mx][my] != '#') continue;
if(d[mx][my] > d[tmp.x][tmp.y] + 1) {
d[mx][my] = d[tmp.x][tmp.y] + 1;
q.push(P(mx, my));
}
}
}
int ans = 0;
for(int i = 0; i < r; i++) //最后检查一下是否烧尽 同时取出最大时间
for(int j = 0; j < c; j++) {
if(s[i][j] != '#') continue;
if(d[i][j] == INF) return INF;
if(d[i][j] > ans) ans = d[i][j];
}
return ans;
}
int main() {
int tmp, T; cin >> T;
for(int cp = 1; cp <= T && cin >> r >> c; cp++) {
for(int i = 0; i < r; i++)
scanf("%s", s[i]);
int ans = INF;
int flag[15][15][15][15]={0};
for(int i = 0; i < r; i++)
for(int j = 0; j < c; j++) {
if(s[i][j] != '#') continue;
for(int u = 0; u < r; u++)
for(int k = 0; k < c; k++) //四重循环
if(!flag[u][k][i][j] && s[u][k] == '#') {
flag[i][j][u][k] = 1; //标记已搜索过
tmp = bfs(i, j, u, k);
if(tmp < ans) ans = tmp;
}
}
if(ans == INF) ans = -1;
printf("Case %d: %d\n", cp, ans);
}
return 0;
}