自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 卷积神经网络CNN解析-针对斯坦福的深度学习教程

附上针对的实验:http://ufldl.stanford.edu/tutorial/supervised/ExerciseConvolutionalNeuralNetwork/ 这里就不陈述卷积网络的意义了,就直接陈述怎么做,怎么写前向传播和反向传播,求各个参数的倒数。 阅读前建议读者对于全连接网络有着透彻的理解。。没有的话,强烈建议看看上述实验前面的全连接部分的练习。 建议读者配合着实验

2016-10-30 17:22:14 2413

原创 基于购买与回收双向数据的推荐系统学习总结(3)

之前讲完了这份研究的思路。。很简单粗暴。但确实就足够拿到苏州的某学术会议上做陈述了啊啊啊我好方。。。 总结一下工作流程 : 1,取得一份含有用户购买物品和出售废品的数据。 2,进行数据信息补缺,清洗。 3,实践一套基本用户协同过滤模型,来验证数据的规律性。 4,对于购买数据,实现线性学习型协同过滤预测模型。 5,对于该模型的数据模式,载入回收数据,调整矩阵。 6,重新运行该模型,

2016-10-30 16:19:27 407

原创 基于购买与回收双向数据的推荐系统学习总结(2)

之前讲到了初步试验的结果,但那种算法对应的数据数据集不适合载入回收数据。 实际实验时用的是如下的算法: 这是个很常见的机器学习线性推荐算法,在coursera的machine learning 里Andrew Ng老师做了很详细的解析,这里就不做过多陈述了。 接下来就要处理回收数据了,把它和购买数据整合在一起。 我们就遇到了个问题:回收的物品在电子商场里不存在。 确实啊这问题很现实,

2016-10-30 15:27:45 465

原创 基于购买与回收双向数据的推荐系统学习总结(1)

总结一下学习成果吧,既然都去苏州学术汇报了一趟了,不写点啥,我怕会遗忘。 推荐一篇很重要的推荐系统概述论文《Recommender System》-Linyuan Lv,概述了在机器学习以前的全部推荐理论的尝试,如何针对不同的场景构造算法,如何评估一 个推荐系统每种指标怎么算以及表现分析,还有数据处理数据特征挖掘。可以说这篇文章是新手入坑推荐系统的第一课吧。 我为什么要做这个事情

2016-10-30 14:47:59 398

原创 失踪人口回归。。。

嘛,我也不觉得会有人看这博客,这东西纯粹的是写给自己看的吧,同时给有心人留一扇虚掩着的门。 从ACM被校队清退到现在已经过去了一年多了,嗯我安慰自己的理由是,那东西是给真的有天赋的人准备的高端游戏。 其实更重要的是:我没有足够努力,没有像别的成员那样的拼。 于是这事以校赛的银告终。 我也许是真的在这方面没有天赋? 大二上成绩很差,也没有找到新的重心,浑浑噩噩的熬过了一个冬天,我发现一个规

2016-10-30 14:46:25 436

原创 CodeForces 589G 线段树

题意:给一个数组,要求1到k的连续区间中大于d的元素与d之差值,的和大于等于r,求k的最小值,即对应的最小下标。 代码执行思路: 开一个线段树,节点保存元素:sum(区间和),min(区间最小值),max(区间最大值),cap(区间有效元素数量)。 1,当d=max时,删除该区间。中间多搞几次二分,并且注意对于sum的运算要用long long,即可ac,具体实现看代码。 #include

2016-02-18 21:40:38 409

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除