题目大意:给定一个文本串和一个模板串,串中含有通配符,求文本串中有多少个位置可以与文本串完全匹配。
题解:利用卷积求解字符串匹配问题。
通配符字符串匹配的数值表示为 \[\sum\limits_{i = 0}^{m - 1}(a[i] - b[i + k])^2 a[i]b[i + k]=0\]。直接展开之后计算三个卷积即可。
需要注意的是:并不是所有 a[i] b[i + k] 均为循环卷积,是否需要倍增取决于是否成环。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef complex<double> cp;
const double eps = 1e-8;
const double pi = acos(-1);
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n, m;
cin >> m >> n;
string s, t;
cin >> t >> s;
int tot = 1, bit = 0;
while (tot <= n + m) {
tot <<= 1;
++bit;
}
vector<int> rev(tot);
for (int i = 0; i < tot; i++) {
rev[i] = rev[i >> 1] >> 1 | (i & 1) << bit - 1;
}
vector<cp> a1(tot), a2(tot), a3(tot), b1(tot), b2(tot), b3(tot);
auto work = [](char ch) {
if (ch == '*') {
return 0;
} else {
return ch - 'a' + 1;
}
};
for (int i = 0; i < m; i++) {
int x = work(t[i]);
a1[m - 1 - i] = x;
a2[m - 1 - i] = x * x;
a3[m - 1 - i] = x * x * x;
}
for (int i = 0; i < n; i++) {
int x = work(s[i]);
b1[i] = x;
b2[i] = x * x;
b3[i] = x * x * x;
}
auto fft = [=](vector<cp> &v, int opt) {
for (int i = 0; i < tot; i++) {
if (i < rev[i]) {
swap(v[i], v[rev[i]]);
}
}
for (int mid = 1; mid < tot; mid <<= 1) {
cp wn(cos(pi / mid), opt * sin(pi / mid));
for (int j = 0; j < tot; j += mid << 1) {
cp w(1, 0);
for (int k = 0; k < mid; k++) {
cp x = v[j + k], y = w * v[j + mid + k];
v[j + k] = x + y, v[j + mid + k] = x - y;
w *= wn;
}
}
}
if (opt == -1) {
for (int i = 0; i < tot; i++) {
v[i].real(round(v[i].real() / tot));
}
}
};
auto calc = [=](vector<cp> &a, vector<cp> &b) {
fft(a, 1), fft(b, 1);
for (int i = 0; i < tot; i++) {
a[i] *= b[i];
}
fft(a, -1);
};
calc(a3, b1), calc(a2, b2), calc(a1, b3);
int ans = 0;
vector<int> pos;
for (int k = 0; k < n - m + 1; k++) {
double ret = a3[m + k - 1].real() - 2 * a2[m + k - 1].real() + a1[m + k - 1].real();
if (fabs(ret) < eps) {
++ans;
pos.push_back(k + 1);
}
}
cout << ans << endl;
for (auto p : pos) {
cout << p << " ";
}
return 0;
}