洛谷P4173 残缺的字符串【FFT】【带通配符单模式串匹配】

时空限制 1000ms / 128MB

题目描述

很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n。可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺。

你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配?

输入格式:

第一行包含两个正整数m,n,分别表示AA串和BB串的长度。
第二行为一个长度为m的字符串A。
第三行为一个长度为n的字符串B。

两个串均仅由小写字母和 ∗ * 号组成,其中*号表示相应位置已经残缺。

输出格式:

第一行包含一个整数k,表示BB串中可以完全匹配A串的位置个数。
若k > 0,则第二行输出k个正整数,从小到大依次输出每个可以匹配的开头位置(下标从1开始)

说明

100%的数据满足 1 ≤ m ≤ n ≤ 300000 1 \leq m \leq n \leq 300000 1mn300000


题目分析

(以下记 S ( x ) S(x) S(x)为字符串 S S S x x x位的ASCII码,且字符串都从第0位开始)

无通配符匹配单模式串匹配

假设先不考虑通配符 ∗ *
定义 A A A的第 x x x位与 B B B的第 y y y位匹配当且仅当 A ( x ) − B ( y ) = 0 A(x)-B(y)=0 A(x)B(y)=0
那么可以进一步定义针对一整个字符串的匹配函数 P ( x ) = ∑ i = 0 m − 1 [ A ( i ) − B ( x − m + 1 + i ) ] 2 P(x)=\sum_{i=0}^{m-1}[A(i)-B(x-m+1+i)]^2 P(x)=i=0m1[A(i)B(xm+1+i)]2
当且仅当 P ( x ) = 0 P(x)=0 P(x)=0时, B B B中以第 x x x位结束的连续 m m m位,与 A A A完全匹配

这里为什么还需要一个平方呢,因为可能有负数出现
例如 A = " a b " , B = " b a " A="ab",B="ba" A="ab",B="ba" P ( x ) = 1 + ( − 1 ) = 0 P(x)=1+(-1)=0 P(x)=1+(1)=0
所以需要乘方全部转化为整正数保证正确性

现在问题转化为如何快速求解所有 P ( x ) P(x) P(x)
尝试将 A A A翻转,记为 A ′ A' A,则有 A ( x ) = A ′ ( m − x − 1 ) A(x)=A'(m-x-1) A(x)=A(mx1)
于是更改 P ( x ) = ∑ i = 0 m − 1 [ A ′ ( m − i − 1 ) − B ( x − m + 1 + i ) ] 2 P(x)=\sum_{i=0}^{m-1}[A'(m-i-1)-B(x-m+1+i)]^2 P(x)=i=0m1[A(mi1)B(xm+1+i)]2
将其展开再稍作变换
P ( x ) = ∑ i = 0 m − 1 A ′ ( m − i − 1 ) 2 + ∑ i = 0 m − 1 B ( x − m + 1 + i ) 2 − 2 ∗ ∑ i = 0 m − 1 A ′ ( m − i − 1 ) B ( x − m + 1 + i ) P(x)=\sum_{i=0}^{m-1}A'(m-i-1)^2+\sum_{i=0}^{m-1}B(x-m+1+i)^2-2*\sum_{i=0}^{m-1}A'(m-i-1)B(x-m+1+i) P(x)=i=0m1A(mi1)2+i=0m1B(xm+1+i)22i=0m1A(mi1)B(xm+1+i)
P ( x ) = ∑ i = 0 m − 1 A ′ ( i ) 2 + ∑ i = 0 m − 1 B ( x − m + 1 + i ) 2 − 2 ∗ ∑ i + j = x A ′ ( i ) B ( j ) P(x)=\sum_{i=0}^{m-1}A'(i)^2+\sum_{i=0}^{m-1}B(x-m+1+i)^2-2*\sum_{i+j=x}A'(i)B(j) P(x)=i=0m1A(i)2+i=0m1B(xm+1+i)22i+j=xA(i)B(j)
我们发现第一项为定值,第二项前缀和即可,第三项是卷积形式
所以可以直接FFT优化

带通配符匹配单模式串匹配

受上述启发,我们可以很快修改出一个新的匹配函数
A ( x ) = ′ ∗ ′ A(x)='*' A(x)=,令 A ( x ) = 0 A(x)=0 A(x)=0
P ( x ) = ∑ i = 0 m − 1 [ A ′ ( m − i − 1 ) − B ( x − m + 1 + i ) ] 2 A ′ ( m − i − 1 ) B ( x − m + 1 + i ) P(x)=\sum_{i=0}^{m-1}[A'(m-i-1)-B(x-m+1+i)]^2A'(m-i-1)B(x-m+1+i) P(x)=i=0m1[A(mi1)B(xm+1+i)]2A(mi1)B(xm+1+i)
再次大力展开
P ( x ) = ∑ i = 0 m − 1 A ′ ( m − i − 1 ) 3 B ( x − m + 1 + i ) + ∑ i = 0 m − 1 B ( x − m + 1 + i ) 3 A ′ ( m − i − 1 ) − 2 ∗ ∑ i = 0 m − 1 A ′ ( m − i − 1 ) 2 B ( x − m + 1 + i ) 2 P(x)=\sum_{i=0}^{m-1}A'(m-i-1)^3B(x-m+1+i)+\sum_{i=0}^{m-1}B(x-m+1+i)^3A'(m-i-1)-2*\sum_{i=0}^{m-1}A'(m-i-1)^2B(x-m+1+i)^2 P(x)=i=0m1A(mi1)3B(xm+1+i)+i=0m1B(xm+1+i)3A(mi1)2i=0m1A(mi1)2B(xm+1+i)2
P ( x ) = ∑ i + j = x A ′ ( i ) 3 B ( j ) + ∑ i + j = x B ( i ) 3 A ′ ( j ) − 2 ∗ ∑ i + j = x A ′ ( i ) 2 B ( j ) 2 P(x)=\sum_{i+j=x}A'(i)^3B(j)+\sum_{i+j=x}B(i)^3A'(j)-2*\sum_{i+j=x}A'(i)^2B(j)^2 P(x)=i+j=xA(i)3B(j)+i+j=xB(i)3A(j)2i+j=xA(i)2B(j)2

我们惊讶的的发现这不就是三个卷积
再次FFT大力优化即可


#include<iostream>
#include<cmath>
#include<algorithm>
#include<map>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long lt;
typedef double dd;
#define eps 1e-7

int read()
{
    int f=1,x=0;
    char ss=getchar();
    while(ss<'0'||ss>'9'){if(ss=='-')f=-1;ss=getchar();}
    while(ss>='0'&&ss<='9'){x=x*10+ss-'0';ss=getchar();}
    return f*x;
}

const dd Pi=acos(-1.0);
const int maxn=1200010;
int n,m;
struct complex{
    dd x,y;
    complex(dd _x=0,dd _y=0){ x=_x; y=_y;}
}A[maxn],B[maxn],C[maxn];
int lim=1,L,R[maxn];
char pat[maxn],txt[maxn];
int a[maxn],b[maxn];
int ans[maxn],cnt;

complex operator +(complex a,complex b){ return complex( a.x+b.x, a.y+b.y);}
complex operator -(complex a,complex b){ return complex( a.x-b.x, a.y-b.y);}
complex operator *(complex a,complex b){ return complex( a.x*b.x-a.y*b.y, a.x*b.y+a.y*b.x);}

void FFT(complex* a,int opt)
{
    for(int i=0;i<lim;++i)
    if(i<R[i]) swap(a[i],a[R[i]]);
    
    for(int i=1;i<lim;i<<=1)
    {
        complex wn(cos(Pi/i),opt*sin(Pi/i));
        for(int j=0;j<lim;j+=(i<<1))
        {
            complex w(1,0);
            for(int k=0;k<i;++k)
            {
                complex nx=a[j+k],ny=w*a[i+j+k];
                a[j+k]=nx+ny;
                a[i+j+k]=nx-ny;
                w=w*wn;
            }
        }
    }
    
    if(opt==-1)
    for(int i=0;i<=lim;++i) a[i].x/=(dd)lim;
}

void solve1()
{
    for(int i=0;i<lim;++i) 
    A[i]=complex(a[i]*a[i]*a[i],0),B[i]=complex(b[i],0);
    FFT(A,1); FFT(B,1);
    for(int i=0;i<lim;++i) C[i]=C[i]+A[i]*B[i];
}

void solve2()
{
    for(int i=0;i<lim;++i) 
    A[i]=complex(a[i]*a[i],0),B[i]=complex(b[i]*b[i],0);
    FFT(A,1); FFT(B,1);
    for(int i=0;i<lim;++i) C[i]=C[i]-(A[i]*B[i]*complex(2,0));
}

void solve3()
{
    for(int i=0;i<lim;++i) 
    A[i]=complex(a[i],0),B[i]=complex(b[i]*b[i]*b[i],0);
    FFT(A,1);FFT(B,1);
    for(int i=0;i<lim;++i) C[i]=C[i]+A[i]*B[i];
}

int main()
{
    n=read();m=read();
    scanf("%s%s",pat,txt);
    reverse(pat,pat+n);
    
    while(lim<=n+m-2) lim<<=1,L++;
    for(int i=0;i<lim;++i)
    R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
    
    for(int i=0;i<n;++i) a[i]=(pat[i]!='*')?(pat[i]-'a'+1):0;
    for(int i=0;i<m;++i) b[i]=(txt[i]!='*')?(txt[i]-'a'+1):0;
    
    solve1(); solve2(); solve3();
    
    FFT(C,-1);
    for(int i=n-1;i<m;++i)
    if(fabs(floor(C[i].x+0.5))<eps)
    ans[++cnt]=i-n+2;
    
    printf("%d\n",cnt);
    for(int i=1;i<=cnt;++i) printf("%d ",ans[i]);
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值