[Luogu4173/BZOJ4259] 残缺的字符串

版权声明:本文为博主原创文章,想转载就转吧! https://blog.csdn.net/qq_35914587/article/details/79962378

题目描述:

给出一个模板串和一个母串,问模板串在母串中出现过几次。带通配符。

题目分析:

设F[i]表示把模板串是否能够与母串的第[is+1i]形成的串匹配.
f[i]/g[i]表示两个串的数值,当为’*’的时候,值为0,否则为与’a’的差值+1
F[i]=j=0s1f(ij)g(i)(f(ij)g(i))2
显然,当模板串能够与母串的第[is+1i]形成的串匹配.
F[i]==0
F[i]=f[ij]3g[j]2f[ij]2g[j]2+f[ij]g[j]3
每一项都是一个卷积的形式,做3次FFT就行了

题目链接:

Luogu 4173
BZOJ 权限题目

Ac 代码:

#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#define ll long long
const int maxm=300010*4;
const double PI=std::acos(-1);
struct complex{
    double real,imag;
    complex(){};
    complex(double _real,double _imag):real(_real),imag(_imag){}
}; 
inline complex operator + (complex x,complex y){return (complex){x.real+y.real,x.imag+y.imag};}
inline complex operator - (complex x,complex y){return (complex){x.real-y.real,x.imag-y.imag};}
inline complex operator * (complex x,complex y){return (complex){x.real*y.real-x.imag*y.imag,x.real*y.imag+y.real*x.imag};}
int len,rev[maxm];
complex A[maxm],B[maxm];
inline void FFT(complex *a,int n,int f)
{
    for(int i=0;i<n;i++) if(i<rev[i]) std::swap(a[i],a[rev[i]]);
    for(int i=1;i<n;i<<=1)
    {
        complex wn=(complex){std::cos(PI/i),f*std::sin(PI/i)};
        for(int j=0;j<n;j+=(i<<1))
        {
            complex w=(complex){1,0};
            for(int k=0;k<i;k++,w=w*wn)
            {
                complex x=a[j+k];
                complex y=a[i+j+k]*w;
                a[j+k]=x+y;
                a[i+j+k]=x-y;
            }
        }
    }
    if(f==1) return;
    for(int i=0;i<n;i++) a[i].real=a[i].real/n;
}
inline void init(int n)
{
    for(int i=0;i<n;i++) A[i]=(complex){0,0},B[i]=(complex){0,0};
}
double f[maxm],g[maxm];
char s[maxm],t[maxm];
ll F[maxm];
int n,m,S,T;
int ans[maxm],tot;
int main()
{
    scanf("%d%d",&S,&T);
    scanf("%s%s",s,t);
    for(int i=0;i<S/2;i++) std::swap(s[i],s[S-i-1]);
    for(int i=0;i<T;i++) f[i]=(t[i]=='*'?0:(t[i]-'a'+1.0));
    for(int i=0;i<S;i++) g[i]=(s[i]=='*'?0:(s[i]-'a'+1.0));
    m=S+T-2;
    for(n=1;n<=m;n<<=1) len++;
    for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));
    init(n);
    for(int i=0;i<T;i++) A[i].real=f[i]*f[i]*f[i];
    for(int i=0;i<S;i++) B[i].real=g[i];
    FFT(A,n,1),FFT(B,n,1);
    for(int i=0;i<n;i++) A[i]=A[i]*B[i];
    FFT(A,n,-1);
    for(int i=0;i<T;i++) F[i]=(ll)round(A[i].real);
    init(n);
    for(int i=0;i<T;i++) A[i].real=(f[i]*f[i]);
    for(int i=0;i<S;i++) B[i].real=(g[i]*g[i]); 
    FFT(A,n,1),FFT(B,n,1);
    for(int i=0;i<n;i++) A[i]=A[i]*B[i];
    FFT(A,n,-1);
    for(int i=0;i<T;i++) F[i]-=2ll*round(A[i].real);
    init(n);
    for(int i=0;i<T;i++) A[i].real=(f[i]);
    for(int i=0;i<S;i++) B[i].real=(g[i]*g[i]*g[i]); 
    FFT(A,n,1),FFT(B,n,1);
    for(int i=0;i<n;i++) A[i]=A[i]*B[i];
    FFT(A,n,-1);
    for(int i=0;i<T;i++) F[i]+=(ll)round(A[i].real);
    for(int i=S-1;i<T;i++) if(!F[i]) ans[++tot]=i-S+2;
    printf("%d\n",tot);
    for(int i=1;i<=tot;i++) printf("%d ",ans[i]);
    return 0;
}
阅读更多

没有更多推荐了,返回首页