2021最后一篇 如何玩转数据分析职场?

本文探讨了数据分析师的职场角色,包括业务和技术方向的职位分类,并反思了不同阶段的数据分析师应具备的能力。强调了业务洞察力、执行力、主动性和逻辑性的重要性,以及不断提升自身高度和广度的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

嗨,这里是小聚的每周分享!

视野决定了境界和能力,而所处的环境又决定了视野。许多人认为会熟练使用Excel就是数据分析师,如果你还会使用Excel中的一些高级功能如透视和函数等等,可能别人就认为你是很牛的数据分析师了,如果你工作中还用到了VBA,在别人眼中你就是数据分析大神了。

真的是这样吗?诚然,单用Excel的确可以解决大部分的数据问题,但是作为一个数据分析师,你并不是一个基层的统计分析从业者,那么数据分析师应该是怎样的职业呢?我们一起来看看。

(一)数据分析师的职场之路

图:数据分析职位分类

数据分析的职位分类按照数据处理的不同阶段分为数据采集、数据分析、与数据挖掘三种。其中数据采集的概念是对企业来说的,包括原始数据源的采集和地理信息数据的采集,这里受众面太窄,就不一一说了。 

下面主要是数据分析和数据挖掘的职位,在之前小聚文章中已提及过,就说说没有讲到的细节:

1、业务方向
大家在招聘网站中搜索数据分析的职位,大概分为两类:辅助业务的数据分析职位和数据分析师职位。

  • 辅助业务的数据分析:一般在零售业里职位设置较多,该职位一定要对业务烂熟于心,对业务有长时间的积淀和理解,用数据发现业务流程中的问题,并提出合理化的解决方案,分析数据是为整个商业逻辑去做支撑。细分职位包括:市场调查、行业分析和经营分析三类。

  • 数据分析师:业务方向的数据分析师,该职位招聘时一定前面有一个限定词,什么数据分析师,归结起来分为三类:产品数据分析师,运营数据分析师和销售数据分析师。

2、技术方向

技术方向主要指数据挖掘方向,分为三类:数据挖掘工程师(机器学习)、数据仓库工程师(构架师)和数据开发工程师。在互联网和金融行业岗位设置较多。

普遍来说:技术方向的基础岗的工资薪酬要比业务岗的薪酬高一个等级,但是做到管理岗的话,在中国,业务岗的薪酬比技术岗的薪酬要高。

(二)数据分析师的职场反思

数据分析师其实是一个要求比较高的职业,可能在大家印象中分析师门槛低好入但是真正做到数据有价值,其实对个人的基本要求还是很高的。

一般的分析师(0~1年)/初级分析师:主要工作在数据支持、数据处理。一般帮助业务方提取数据,根据运营/产品的要求查询数据。而对于数据的使用背景、使用的频次、业务方如何使用、使用后的效果都不太care ,提取数据后发给业务方即需求完成。坦诚的讲这类算不算数据分析师,只能称之为数据支持员。

数据分析师(1~3年)/高级数据分析师:可以独挡一条业务线的数据支持、业务看板的搭建、业务问题专项分析,能够与业务方很好的交流并针对业务中存在的问题提出建议。这类分析师能够给业务带来真正的价值,但是相对来说接触到的都是一线的运营/产品,如果有较好的建议在落地时会遇到相当大的阻力。阻力的原因对业务的高度把控不到位,很难得到更高级别的管理者认同。

资深数据分析师/数据专家(大于3年):能够独挡整个公司的数据规划能力,并能够快速产出价值。这部分数据分析师能够把控到高级管理者对数据的需求,能够通过自己的业务经验快速协调各个部门资源帮助业务产出。举个例子:一位资深的数据分析师应该具有对一个公司数据使用规划及数据使用的规范,倘若你空降到一个500人的团队能够快速完成该公司数据资产的使用以及帮助业务/老板/投资人认识数据价值等能力。

(三)如何提升自己在数据分析行业的职场竞争力

通过上面对数据分析师的工作年限与岗位要求分析,数据分析师在不同阶段有不同的职责和要求,如何最大化数据分析师的价值?

我们来一条条解析。

01

业务洞察力

业务洞察力,说的通俗点,就是如何从海量信息中获取有效信息。完成数据收拢,培养业务方对数据分析师依赖。

企业的数据分散在各个业务中,各个业务对数据的使用大相径庭。但数据口径定义不一致会导致各方数据不一致问题,最终汇报到老板/业务方处会存在数据不认可问题,所以数据分析师最基础一步做到数据收拢。

集团数据全部回流数据分析师这--->分析师根据业务学期制定业务指标--->指标口径落文档以便日后同步新人--->数据分析师出数

整个流程也是对数据使用的一种规范化,规范的流程能给数据分析师减少很多不必要的麻烦。数据收拢也是数据分析师一种数据资源,业务在使用数据的过程中慢慢依赖数据分析师,这也能体现数据分析师的价值之一。

2

执行力

数据分析师属于业务端工作,长期接触公司项目与客户需求。而技术端一般只管产品功能实现。掌握Python的分析师,会更了解业务端和技术端双方的痛点在哪里。从而想办法把自己的分析结果/想法落地到业务中

分析师最珍贵的就是对业务的想法,例如怎么提升SAAS活性、数据异常的原因以及解决方案、GMV下滑分析与改进方案.....这些都是对业务深思后发现的问题与想法,但想法终究是想法,对业务没有提升的想法都是一厢情愿。

当数据分析师发现问题并提出解决方案的时候应该及时反馈到业务,并用数据证明自己的分析和想法,及时落地验证是否对业务有很大的提升或者产出很大的价值。这个过程只需要考虑蛋糕是否有,如果有是否可以做大,不要一开始就抢功劳。我们借助运营/产品来验证自己的想法其实就是一种很大的收获,当然帮助业务完成他们的KPI也是变现完成我们的KPI。

3

主动性和逻辑性

主动性和逻辑性是个玄学,职场人都会说自己有主动性,但问题是老板怎样才能感受到你的主动性呢?比如......

在转化率数据低迷的时候很快调取数据找到原因,甚至用Python写一个自动预警脚本,准确地表达给一线业务人员,而不是在老板问你的时候才说“我觉得”;

在公司新业务尚未成型的时候收集整理有效数据,建立起可视化的指标体系,指导业务,而不是在老板问你的时候才说“我觉得”;

主动学习,主动在固化的数据工作流程中找到新的提效方法,比如发现同事还在复制粘贴重复劳动,用Python帮同事写一个合并文件的脚本。这个细节虽然老板不会问,但主动性和逻辑性就是因为一个人有强大的能力才能展现出来。

总结来说,要当一名“高级”数据分析师,一直吃老本是不可能的。只有不断学习不断思考才能做到顶尖。

4

提升自身的高度和广度

这里的高度是指看问题的高度,同样一条业务线VP想要看的点和一线的运营想要看到的点大相径庭。当然一线运营也是为了完成VP的设置的KPI,只是一线的运营更底层更业务更局限某一个点或者某一块业务。所以多参加业务方的会议/集团的战略会议/有大佬主持的业务会议,也要关注市场的变化/竞品的发展等。

四.小结

“错误是发现的入口。”——James Joyce (著名的爱尔兰小说家)

在进行数据分析师职业规划的同时,我们千万不能因为自身一些错误或原因而使得我们的数据分析师职业规划停滞不前。反之,在我们的数据分析师岗位上,我们一定要多多留意在数据分析师工作中可能会出现或常犯的一些错误,唯有这样我们才能步步为营、稳扎稳打,不断提升自我的技能来提高自己在数据分析行业的职场竞争力,这样我们才有脱颖而出的机会。

END

2021即将过去,新的一年到来,

在新的一年跟着小聚继续学习,一同进步!

同时,聚数学院就业训练营将在元旦后开课,

不管你是想要转行,还是提升自己的专业技能,或是为自己赋能,

都可以学习这套课程~

了解更多详情,可咨询小聚或关注同名公众号

最后,预祝大家

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值