关于数据清洗那些事儿

数据清洗在数据预处理中至关重要,影响后续分析的质量和效率。本文详述数据清洗的去重、异常值处理和缺失值填充方法,提供实用技巧,帮助提升数据处理的专业性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关注小聚,数据分析不迷路

在数据化运营过程中,海量的原始数据中存在着大量不完整、不一致、有异常的数据,严重影响到数据挖掘建模的执行效率,甚至可能导致挖掘结果的偏差,所以进行数据清洗就显得尤为重要,数据清洗完成后接着进行或者同时进行数据集成、变换、规约等一系列的处理,该过程就是数据预处理。

数据预处理是其中的重要环节,它直接决定了后续数据工作的质量和价值输出。‍

人们通常认为,数据预处理是一个非常枯燥的部分。但它就是「做好准备」和「完全没有准备」之间的差别,也是表现专业和业余之间的差别。就像为度假做好事先准备一样,如果你提前将行程细节确定好,就能够预防旅途变成一场噩梦。

数据预处理流程

首先我们知道,数据预处理的主要内容包括数据清洗、数据集成、数据变换和数据规约。

可以用这些逐步检测并优化提升数据质量,不是每次预处理都需要做这些所有步骤,视数据情况挑选若干即可。

由于在数据分析过程中主要涉及的是数据清洗,所以本文详细讲解这一部分,那么数据清洗有哪些铁则或者经验呢?小聚这里整理如下:

数据清洗

数据清洗主要是删除原始数据集中的无关数据、重复数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,补足缺失值、去除异常值,纠正错误。

一.去重

不管是外部回溯数据还是在自己数据库中拉取的数据,可能由于存储逻辑等问题,会出现很多重复数据,重复数据属于冗余数据,拿到数据所要做的第一步就是检查是否有重复数据,若有,则需要进行去重处理,在python中可以使用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值