Leetcode(739)——每日温度
题目
给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i]
是指在第 i 天之后,才会有更高的温度。如果气温在这之后都不会升高,请在该位置用 0 来代替。
示例 1:
输入: temperatures = [73,74,75,71,69,72,76,73]
输出: [1,1,4,2,1,1,0,0]
示例 2:
输入: temperatures = [30,40,50,60]
输出: [1,1,1,0]
示例 3:
输入: temperatures = [30,60,90]
输出: [1,1,0]
提示:
- 1 <=
temperatures.length
<= 105 - 30 <=
temperatures[i]
<= 100
题解
方法一:暴力解法
思路
两层 for 循环,把至少需要等待的天数计算出来。
代码实现
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& temperatures) {
vector<int> answer(temperatures.size(), 0);
for (int i = 0; i < temperatures.size() - 1; i++) {
for (int j = i + 1; j < temperatures.size(); j++) {
if (temperatures[j] > temperatures[i]) {
answer[i] = j - i;
break;
}
}
}
return answer;
}
};
复杂度分析
时间复杂度:
O
(
N
2
)
O(N^2)
O(N2) ,数组 temperatures 长度为
N
N
N ,算法使用两层 for 循环遍历了
N
2
N^2
N2 次数组 temperatures。远比后两个方法要更加耗时。
空间复杂度:
O
(
N
)
O(N)
O(N) ,保存结果需要长度为
N
N
N 的数组
方法二:单调栈
思路
我们可以将问题转换为另一种问法:查找数组中比每个值大的第一个值,并求它们的下标之差,类似之前的 leetcode(20)——有效的括号。
我们可以发现以下规律:
- 若找到比值 A 大的第一个值 B,则在 A 和 B 之间的全部值都比 A 要小,且序列 [A,B) 是降序排序,即序列中的数都比前一个数小或者相等;
- 类似 leetcode(20)——有效的括号,若以 A 和 B 为一对,此时我们发现序列 [A,B) 的子序列也是类似于它的降序排序。所以问题的解实际上是从最小子序列一步步去除,直到最大子序列被去除为止,比如 [71,65,61,76] ,先去除 (61,76),再去除 (65,76)。
- 此时我们又发现,与括号不同,有时候几个值之可能与同一值是一对的。比如 [71,65,61,76] ,(61,76)和(65,76)。
算法实现:
- 遍历整个数组,且用栈保存值对应的下标,并进行下面判断:
- 如果栈不空,且新值大于栈顶值对应的值,修改存储结果的数组中对应下标的值为二者的距离( 新 值 对 应 的 下 标 − 栈 顶 值 新值对应的下标 - 栈顶值 新值对应的下标−栈顶值),再取出栈顶值。
- 重复第2步,直到不满足条件为止。然后将新值入栈,这样就可以一直保持单调栈,且每个数字和第一个大于它的数的距离也可以算出来。
代码实现
初始版本:(因为嵌套了3层循环,所以时间复杂度很高)
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& temperatures) {
stack<int> tmp; // 临时栈
vector<int> answer; // 记录结果
int n;
// 每一次tmp入栈,都给 answer 添加0到数组末尾,若有更高温度(即对应旧值出栈)则修改其值
for(auto &val: temperatures){
if(tmp.empty()){ // 刚开始时,tmp为空栈,对空栈执行 top 操作是错误的
tmp.push(val);
answer.push_back(0);
}else{
while(!tmp.empty() && tmp.top() < val){ // 即新值是否大于栈的当前最小值
tmp.pop();
// 从与当前最大值在栈中位置最近的值开始,修改其在 answer 中对应的值,因为之前没有修改所以一定是0
n = answer.size()-1;
while(0 <= n){
if(answer[n] == 0){
answer[n] = answer.size()-n;
break;
}else n--;
}
}
tmp.push(val);
answer.push_back(0);
}
}
return answer;
}
};
优化版本:(存储的不再是数组 temperatures 的值,而是其值对应的下标,这样做可以方便计算差值,又因为同时取下标对应值是常数级的操作,所以大幅度减少了时间复杂度。最后省略了上一个版本的最内层循环)
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& temperatures) {
stack<int> tmp; // 临时栈
int l = temperatures.size();
vector<int> answer(l, 0); // 记录结果
int n;
if(l == 1) return answer; // 刚开始时,tmp为空栈,对空栈执行 top 操作是错误的
for(int n = 0; n < l; n++){
while(!tmp.empty() && temperatures[tmp.top()] < temperatures[n]){ // 即新值是否大于栈的当前最小值
// 从与当前最大值在栈中位置最近的值开始,修改其在 answer 中对应的值
answer[tmp.top()] = n-tmp.top();
tmp.pop();
}
tmp.push(n); // 存储下标
}
return answer;
}
};
复杂度分析
优化版本的:
时间复杂度:
O
(
N
)
O(N)
O(N) ,其中
N
N
N 是数组 temperatures 的长度,算法实际上相当于遍历了长度为
2
N
2N
2N 的数组,再加上常数级别的栈操作
空间复杂度:
O
(
N
)
O(N)
O(N) ,其中
N
N
N 是数组 temperatures 的长度,为栈和结果数组的空间之和
方法三:不使用栈,使用动态规划(DP)
思路
根据题意,从最后一天推到第一天,这样会简单很多。因为最后一天显然不会再有升高的可能,结果直接为0。再看倒数第二天的温度,如果比倒数第一天低,那么答案显然为1,如果比倒数第一天高,又因为倒数第一天对应的结果为0,即表示之后不会再升高,所以倒数第二天的结果也应该为0。
自此我们容易观察出规律:要求出第 i 天对应的结果,只需要知道第 i+1 天对应的结果即可算出——(这很明显符合动态规划适用问题的特征:具有最优子结构和重叠子问题):
状态转换方程——即如何求 temperatures[i]
的值:
比较 temperatures[i]
和 temperatures[i+1]
的大小:
- 若
temperatures[i] < temperatures[i+1]
,那么answer[i]=1
; - 若
temperatures[i] > temperatures[i+1]
,那么判断answer[i+1]
的值:- 若
answer[i+1]
为0,那么answer[i]=0
- 若
answer[i+1]
不为0,那就比较temperatures[i]
和temperatures[i+1+answer[i+1]]
(也就是将第 i 天的温度与比第 i+1 天大的那天的温度进行比较),然后根据比较的结果重复执行前面的步骤,直到求出answer[i]
的值。
- 若
可以看出,设问题为求出第 i 天对应的结果(即求出 answer[i]
的值),则其子问题为比较 temperatures[i]
和 temperatures[i+1]
的大小和求出第 i+1 天对应的结果,所以
- 最优子结构:这里的“最优”指比第 i 天的温度更高的那些天中距离最近的。
- 重叠子问题:要求出第 i 天对应的结果,则必须先求出第 i+1 天对应的结果,甚至有时还要求出比第 i+1 天的那天温度更高的那一天。
代码实现
class Solution {
public:
vector<int> dailyTemperatures(vector<int>& temperatures) {
vector<int> answer(temperatures.size(), 0);
int l = answer.size();
for (int i = l - 2; i >= 0; i--){ // 因为最后一天一定为0,所以从倒数第二个数开始遍历
for (int j = i + 1; j < l; j += answer[j]) {
if (temperatures[i] < temperatures[j]) {
answer[i] = j - i;
break;
} else if (answer[j] == 0) {
answer[i] = 0;
break;
}
}
}
return answer;
}
};
复杂度分析
时间复杂度:
O
(
N
)
O(N)
O(N) ,其中
N
N
N 是数组 temperatures 的长度。虽然采用了嵌套 for 循环,但时间复杂度不会是
O
(
N
2
)
O(N^2)
O(N2), 因为内循环是跳跃的,实际上与方法二的单调栈的内循环次数一样。
空间复杂度:
O
(
N
)
O(N)
O(N) ,实际上比方法二要少很多空间,因为没有使用栈