Leetcode(739)——每日温度

Leetcode(739)——每日温度

题目

给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指在第 i 天之后,才会有更高的温度。如果气温在这之后都不会升高,请在该位置用 0 来代替。

示例 1:

输入: temperatures = [73,74,75,71,69,72,76,73]
输出: [1,1,4,2,1,1,0,0]

示例 2:

输入: temperatures = [30,40,50,60]
输出: [1,1,1,0]

示例 3:

输入: temperatures = [30,60,90]
输出: [1,1,0]

提示:

  • 1 <= temperatures.length <= 105
  • 30 <= temperatures[i] <= 100

题解

方法一:暴力解法

思路

​​  两层 for 循环,把至少需要等待的天数计算出来。

代码实现
class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& temperatures) {
        vector<int> answer(temperatures.size(), 0);
        for (int i = 0; i < temperatures.size() - 1; i++) {
            for (int j =  i + 1; j < temperatures.size(); j++) {
                if (temperatures[j] > temperatures[i]) {
                    answer[i] = j - i;
                    break;
                }
            }
        }
        return answer;
    }
};
复杂度分析

时间复杂度 O ( N 2 ) O(N^2) O(N2) ,数组 temperatures 长度为 N N N ,算法使用两层 for 循环遍历了 N 2 N^2 N2 次数组 temperatures。远比后两个方法要更加耗时。
空间复杂度 O ( N ) O(N) O(N) ,保存结果需要长度为 N N N 的数组

方法二:单调栈

思路

​​  我们可以将问题转换为另一种问法:查找数组中比每个值大的第一个值,并求它们的下标之差,类似之前的 leetcode(20)——有效的括号
​​  我们可以发现以下规律:

  • 若找到比值 A 大的第一个值 B,则在 A 和 B 之间的全部值都比 A 要小,且序列 [A,B) 是降序排序,即序列中的数都比前一个数小或者相等;
  • 类似 leetcode(20)——有效的括号,若以 A 和 B 为一对,此时我们发现序列 [A,B) 的子序列也是类似于它的降序排序。所以问题的解实际上是从最小子序列一步步去除,直到最大子序列被去除为止,比如 [71,65,61,76] ,先去除 (61,76),再去除 (65,76)。
  • 此时我们又发现,与括号不同,有时候几个值之可能与同一值是一对的。比如 [71,65,61,76] ,(61,76)和(65,76)。

算法实现:

  1. 遍历整个数组,且用栈保存值对应的下标,并进行下面判断:
  2. 如果栈不空,且新值大于栈顶值对应的值,修改存储结果的数组中对应下标的值为二者的距离( 新 值 对 应 的 下 标 − 栈 顶 值 新值对应的下标 - 栈顶值 ),再取出栈顶值。
  3. 重复第2步,直到不满足条件为止。然后将新值入栈,这样就可以一直保持单调栈,且每个数字和第一个大于它的数的距离也可以算出来。
代码实现

初始版本:(因为嵌套了3层循环,所以时间复杂度很高)

class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& temperatures) {
        stack<int> tmp;     // 临时栈
        vector<int> answer; // 记录结果
        int n;

        // 每一次tmp入栈,都给 answer 添加0到数组末尾,若有更高温度(即对应旧值出栈)则修改其值
        for(auto &val: temperatures){
            if(tmp.empty()){    // 刚开始时,tmp为空栈,对空栈执行 top 操作是错误的
                tmp.push(val);
                answer.push_back(0);
            }else{
                while(!tmp.empty() && tmp.top() < val){  // 即新值是否大于栈的当前最小值
                    tmp.pop();
                    // 从与当前最大值在栈中位置最近的值开始,修改其在 answer 中对应的值,因为之前没有修改所以一定是0
                    n = answer.size()-1;
                    while(0 <= n){
                        if(answer[n] == 0){
                            answer[n] = answer.size()-n;
                            break;
                        }else n--;
                    }
                }
                tmp.push(val);
                answer.push_back(0);
            }
        }
        return answer;
    }
};

优化版本:(存储的不再是数组 temperatures 的值,而是其值对应的下标,这样做可以方便计算差值,又因为同时取下标对应值是常数级的操作,所以大幅度减少了时间复杂度。最后省略了上一个版本的最内层循环)

class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& temperatures) {
        stack<int> tmp;     // 临时栈
        int l = temperatures.size();
        vector<int> answer(l, 0); // 记录结果
        int n;

        if(l == 1) return answer;    // 刚开始时,tmp为空栈,对空栈执行 top 操作是错误的
        for(int n = 0; n < l; n++){
            while(!tmp.empty() && temperatures[tmp.top()] < temperatures[n]){  // 即新值是否大于栈的当前最小值
                // 从与当前最大值在栈中位置最近的值开始,修改其在 answer 中对应的值
                answer[tmp.top()] = n-tmp.top();
                tmp.pop();
            }
            tmp.push(n);    // 存储下标
        }
        return answer;
    }
};
复杂度分析

优化版本的:
时间复杂度 O ( N ) O(N) O(N) ,其中 N N N 是数组 temperatures 的长度,算法实际上相当于遍历了长度为 2 N 2N 2N 的数组,再加上常数级别的栈操作
空间复杂度 O ( N ) O(N) O(N) ,其中 N N N 是数组 temperatures 的长度,为栈和结果数组的空间之和

方法三:不使用栈,使用动态规划(DP)

思路

​​  根据题意,从最后一天推到第一天,这样会简单很多。因为最后一天显然不会再有升高的可能,结果直接为0。再看倒数第二天的温度,如果比倒数第一天低,那么答案显然为1,如果比倒数第一天高,又因为倒数第一天对应的结果为0,即表示之后不会再升高,所以倒数第二天的结果也应该为0。
​​  自此我们容易观察出规律:要求出第 i 天对应的结果,只需要知道第 i+1 天对应的结果即可算出——(这很明显符合动态规划适用问题的特征:具有最优子结构和重叠子问题)

状态转换方程——即如何求 temperatures[i] 的值:
比较 temperatures[i]temperatures[i+1] 的大小:

  • temperatures[i] < temperatures[i+1],那么 answer[i]=1
  • temperatures[i] > temperatures[i+1],那么判断 answer[i+1] 的值:
    • answer[i+1] 为0,那么 answer[i]=0
    • answer[i+1] 不为0,那就比较 temperatures[i]temperatures[i+1+answer[i+1]](也就是将第 i 天的温度与比第 i+1 天大的那天的温度进行比较),然后根据比较的结果重复执行前面的步骤,直到求出 answer[i] 的值。

可以看出,设问题为求出第 i 天对应的结果(即求出 answer[i] 的值),则其子问题为比较 temperatures[i]temperatures[i+1] 的大小和求出第 i+1 天对应的结果,所以

  • 最优子结构:这里的“最优”指比第 i 天的温度更高的那些天中距离最近的。
  • 重叠子问题:要求出第 i 天对应的结果,则必须先求出第 i+1 天对应的结果,甚至有时还要求出比第 i+1 天的那天温度更高的那一天。
代码实现
class Solution {
public:
    vector<int> dailyTemperatures(vector<int>& temperatures) {
        vector<int> answer(temperatures.size(), 0);
        int l = answer.size();
        for (int i = l - 2; i >= 0; i--){	// 因为最后一天一定为0,所以从倒数第二个数开始遍历
            for (int j = i + 1; j < l; j += answer[j]) {
                if (temperatures[i] < temperatures[j]) {
                    answer[i] = j - i;
                    break;
                } else if (answer[j] == 0) {
                    answer[i] = 0;
                    break;
                }
            }
        }
        return answer;
    }
};
复杂度分析

时间复杂度 O ( N ) O(N) O(N) ,其中 N N N 是数组 temperatures 的长度。虽然采用了嵌套 for 循环,但时间复杂度不会是 O ( N 2 ) O(N^2) O(N2), 因为内循环是跳跃的,实际上与方法二的单调栈的内循环次数一样
空间复杂度 O ( N ) O(N) O(N) ,实际上比方法二要少很多空间,因为没有使用栈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值