走出迷宫

本文探讨如何在给定的n*m迷宫地图中,从起点找到通往出口的最短路径。通过理解迷宫地图,可以利用算法解决这一问题。
描述

当你站在一个迷宫里的时候,往往会被错综复杂的道路弄得失去方向感,如果你能得到迷宫地图,事情就会变得非常简单。 
假设你已经得到了一个n*m的迷宫的图纸,请你找出从起点到出口的最短路。

输入
第一行是两个整数n和m(1<=n,m<=100),表示迷宫的行数和列数。
接下来n行,每行一个长为m的字符串,表示整个迷宫的布局。字符'.'表示空地,'#'表示墙,'S'表示起点,'T'表示出口。
输出

输出从起点到出口最少需要走的步数。


程序:

#include<bits/stdc++.h>
using namespace std;
int n,m;
char a[110][110];
struct data{
int x,y;
}t,s;
queue<data>q;
int xx[4]={1,0,-1,0},yy[4]={0,1,0,-1};
bool bo[110][110];
int d

### Python 实现迷宫求解算法 #### 使用递归回溯法解决迷宫问题 一种常见的方法是利用递归回溯来探索所有可能的路径直至找到口。这种方法简单直观,适合初学者理解基本原理。 ```python def solve_maze(maze, start, end): directions = [(0, 1), (1, 0), (0, -1), (-1, 0)] # 右 下 左 上 def is_valid(x, y): if not (0 <= x < len(maze) and 0 <= y < len(maze[0])): return False if maze[x][y] != 0: # 非通路 return False return True def backtrack(path, pos): if pos == end: path.append(pos) return True for dx, dy in directions: next_pos = (pos[0]+dx, pos[1]+dy) if is_valid(*next_pos): maze[next_pos[0]][next_pos[1]] = 2 # 标记为已访问 if backtrack(path, next_pos): path.append(pos) return True maze[next_pos[0]][next_pos[1]] = 0 # 恢复现场 return False solution_path = [] if backtrack(solution_path, start): print("成功走出迷宫") print(f"路径为:{solution_path[::-1]}") #逆序后的列表作为正确路径 else: print("无法到达终点") maze_example = [ [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 1], [1, 1, 0, 0] ] solve_maze(maze_example, (3, 2), (0, 0)) ``` 此段代码定义了一个`solve_maze()`函数用于尝试从起点走到终点,并打印解决方案[^3]。 #### 利用广度优先搜索(BFS) 另一种有效的方法就是采用BFS遍历整个图结构,在遇到障碍物时停止前进并转向其他方向继续探索新的分支,直到抵达目标位置为止。 ```python from collections import deque def bfs_solve_maze(maze, start, goal): queue = deque([start]) visited = set() parent_map = {start: None} while queue: current = queue.popleft() if current == goal: break neighbors = get_neighbors(current, maze) for neighbor in neighbors: if neighbor not in visited: visited.add(neighbor) parent_map[neighbor] = current queue.append(neighbor) path = reconstruct_path(parent_map, start, goal) return path def get_neighbors(position, grid): rows, cols = len(grid), len(grid[0]) row, col = position possible_moves = [] moves = ((-1, 0),(1, 0),(0, -1),(0, 1)) for dr, dc in moves: new_row, new_col = row + dr, col + dc if 0 <= new_row < rows and 0 <= new_col < cols and grid[new_row][new_col]==0 : possible_moves.append((new_row,new_col)) return possible_moves def reconstruct_path(came_from, start, target): reverse_path = [] at = target while at != start: reverse_path.append(at) at = came_from[at] reverse_path.reverse() return [start] + reverse_path bfs_solution = bfs_solve_maze([ [1, 1, 1, 1], [0, 0, 1, 1], [1, 0, 0, 1], [1, 1, 0, 0]], (3, 2), (0, 0) ) print(bfs_solution) ``` 这段程序实现了基于队列的数据结构来进行层次化扩展节点的过程,从而保证最先被发现的目标即是最优解之一[^1]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值