hdu5883【欧拉通路】

欧拉回路

对于一个图G存在这样一条路径,使它在所有边都经过一次,称这样的路径为欧拉路径。若该路径是一个圈,则称为是欧拉回路;

具有欧拉回路的图称为欧拉图(简称E图)。具有欧拉路径但不具有欧拉回路的称为半欧拉图。

无向图存在欧拉回路的充要条件
当且仅当这个图的所有顶点的度数是偶数,且该图是连通图。

无向图含有欧拉通路的充要条件
当且仅当这个图有零个或两个奇数度的结点,且该图是连通图。

有向图存在欧拉回路的充要条件
所有顶点的 入度 和 出度 的和是 偶数,且该图是连通图。

有向图含有欧拉通路的充要条件
起始点s 的入度=出度-1,结束点t的出度=入度-1 或两个点的入度=出度,且该图是连通图。

题意:n个点m条无向边的图,找一个欧拉通路/回路,下标是p1,p2,p3…pt,然后使得ap1XORap2XOR…XORapt这个值最大。
思路:
首先要判断一下这个图是不是联通的,用并查集就好了,然后有个注意点就是可能是单个独立点;
然后再判断是不是欧拉通路,不是也不行;
最后计算,最后如果是欧拉回路还要找一个最大起点(终点)。

#include <bits/stdc++.h>
using namespace std;

const int N=1e5+10;
int n;

int pre[N];
int a[N];
int in[N];

int Find(int x)
{
    int r=x;
    while(pre[r]!=r)
        r=pre[r];
    int i=x,j;
    while(pre[i]!=r)
    {
        j=pre[i];
        pre[i]=r;
        i=j;
    }
    return r;
}

void Union(int x,int y)
{
    int xx=Find(x);
    int yy=Find(y);
    if(xx!=yy)
        pre[xx]=yy;
}

void init()
{
    for(int i=1;i<=n;i++)
    {
        scanf("%d",&a[i]);
        pre[i]=i;
        in[i]=0;
    }
}

int main()
{
    int T,m,x,y;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        init();
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&x,&y);
            in[x]++;
            in[y]++;
            Union(x,y);
        }
        int flag=0;
        for(int i=1;i<=n;i++)
        {
            if(pre[i]==i&&in[i])
                flag++;
            if(flag==2)
                break;
        }
        if(flag==2)
        {
            puts("Impossible");
            continue;
        }
        int res,num=0;
        for(int i=1;i<=n;i++)
        {
            if(in[i]&1)
                num++;
        }
        if(!(!num||num==2))
        {
            puts("Impossible");
                continue;
        }
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            res=in[i];
            if(res%2)
            {
                res/=2;
                if((res+1)%2)
                    ans^=a[i];
            }
            else
            {
                res/=2;
                if(res%2)
                    ans^=a[i];
            }
        }
        //printf("%d\n",ans);
        if(!num)
        {
            res=ans;
            for(int i=1;i<=n;i++)
            {
                res=max(res,ans^a[i]);
            }
            printf("%d\n",res);
        }
        else
            printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值