题意:给出F[1], F[2]。求递推式F[n]=F[n-1]+2*F[n-2]+n^4的第n项(对2147493647取余)。
数据范围:n, F[1], F[2]<2^31
题解:如果没有n^4,既然n超出了直接地推的范围,那比较容易看出用矩阵快速幂加速递推。然而这个单独的n^4直接给人整懵了,所以考虑把这一项也考虑划入递推的范围。想了半天不知道2x2或者3x3的矩阵可以咋整,只好从别的大佬的神仙操作里取经,搞一个7x7的矩阵。通过二项式定理,用(n-1)的4,3,2,1,0次方来推出n的四次方也可谓神来一笔%%%
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll MOD=2147493647;
struct Matrix {
ll v[7][7];
Matrix () {memset(v,0,sizeof(v));}
}A,x;
ll n,a,b;
inline void init() {
A.v[0][0]=1,A.v[0][1]=2,A.v[0][2]=1,A.v[0][3]=4,A.v[0][4]=6,A.v[0][5]=4,A.v[0][6]=1;
A.v[1][0]=1,A.v[1][1]=0,A.v[1][2]=0,A.v[1][3]=0,A.v[1][4]=0,A.v[1][5]=0,A.v[1][6]=0;
A.v[2][0]=0,A.v[2][1]=0,A.v[2][2]=1,A.v[2][3]=4,A.v[2][4]=6,A.v[2][5]=4,A.v[2][6]=1;
A.v[3][0]=0,A.v[3][1]=0,A.v[3][2]=0,A.v[3][3]=1,A.v[3][4]=3,A.v[3][5]=3,A.v[3][6]=1;
A.v[4][0]=0,A.v[4][1]=0,A.v[4][2]=0,A.v[4][3]=0,A.v[4][4]=1,A.v[4][5]=2,A.v[4][6]=1;
A.v[5][0]=0,A.v[5][1]=0,A.v[5][2]=0,A.v[5][3]=0,A.v[5][4]=0,A.v[5][5]=1,A.v[5][6]=1;
A.v[6][0]=0,A.v[6][1]=0,A.v[6][2]=0,A.v[6][3]=0,A.v[6][4]=0,A.v[6][5]=0,A.v[6][6]=1;
x.v[0][0]=b;
x.v[1][0]=a;
x.v[2][0]=16;
x.v[3][0]=8;
x.v[4][0]=4;
x.v[5][0]=2;
x.v[6][0]=1;
}
inline Matrix mul(Matrix a,Matrix b) {
Matrix ret;
for (int i=0;i<7;++i)
for (int j=0;j<7;++j)
for (int k=0;k<7;++k)
(ret.v[i][j]+=a.v[i][k]*b.v[k][j])%=MOD;
return ret;
}
inline Matrix fpow(Matrix M,ll m) {
Matrix ret;
for (int i=0;i<7;++i)
for (int j=0;j<7;++j)
ret.v[i][j]=(i==j);
while (m) {
if (m&1) ret=mul(M,ret);
m>>=1,M=mul(M,M);
}
return ret;
}
int main() {
int kase;
scanf("%d",&kase);
while (kase--) {
scanf("%lld%lld%lld",&n,&a,&b);
init();
Matrix ans=mul(fpow(A,n-2),x);
printf("%lld\n",ans.v[0][0]);
}
return 0;
}