题意:在一条首尾相接的纬度线上,青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
题解:也是三年前就见过的经典题了。设要跳x次,那么,即解不定方程的解,满足x为可行的最小正整数。直接exgcd搞一搞即可。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
ll s,t,a,b,len;
inline ll exgcd(ll a,ll b,ll &x,ll &y) {
if (!b) {
x=1,y=0;
return a;
}
ll x1,y1,d=exgcd(b,a%b,x1,y1);
x=y1,y=x1-(a/b)*y1;
return d;
}
inline ll Abs(ll x) {
return x>0?x:-x;
}
int main() {
scanf("%lld%lld%lld%lld%lld",&s,&t,&a,&b,&len);
a-=b,b=len;
ll x,y,c=t-s,d=exgcd(a,b,x,y);
if (c%d) puts("Impossible");
else {
x*=c/d,y*=c/d;
ll t=Abs(b/d);
x=(x%t+t)%t;
y=(c-a*x)/b;
printf("%lld\n",x);
}
return 0;
}