题意:给一棵n个点的无根树,每个点的权值为,每条边长度为1,选一个点使得最大,其中dist(i, v)表示i到v的简单路径的长度(n<=2e5)。
题解:把n个点都算一次的复杂度为,所以先默认1为根(选为“v点”),然后考虑换根对答案的影响,从而两次dfs可以算出以每个点为v点的答案,在其中选一个最大的即可。
适合中午昏昏欲睡的时候写的题......
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2e5+4;
int n;
int a[N];
struct Edge {
int v,nxt;
}e[N<<1];
int head[N],etot;
int dep[N];
ll sum[N];
ll ans[N];
inline void smax(ll &x,ll y) {
x=x<y?y:x;
}
inline void adde(int u,int v) {
e[++etot].nxt=head[u],e[etot].v=v,head[u]=etot;
}
inline int read() {
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x*f;
}
inline void dfs1(int p,int fa) {
sum[p]=a[p];
for (int i=head[p];~i;i=e[i].nxt) {
int v=e[i].v;
if (v^fa) {
dep[v]=dep[p]+1;
dfs1(v,p);
sum[p]+=sum[v];
}
}
}
inline void dfs2(int p,int fa,ll up) {
for (int i=head[p];~i;i=e[i].nxt) {
int v=e[i].v;
if (v^fa) {
// printf("%d %d\n",v,ans[p]+sum[p]+up-(sum[v]<<1);
smax(ans[v],ans[p]+sum[p]+up-(sum[v]<<1));
dfs2(v,p,up+sum[p]-sum[v]);
}
}
}
int main() {
memset(head,-1,sizeof(head));
n=read();
for (register int i=1;i<=n;++i) a[i]=read();
for (register int i=1;i<n;++i) {
int u=read(),v=read();
adde(u,v);
adde(v,u);
}
dfs1(1,0);
for (register int i=1;i<=n;++i) ans[1]+=1ll*dep[i]*a[i];
dfs2(1,0,0);
ll ret=0;
for (register int i=1;i<=n;++i) smax(ret,ans[i]);
cout<<ret<<endl;
return 0;
}