CF1010F Tree(链分治)(分治FFT)(DSU on tree)

本文介绍了一种解决CF1010FTree问题的方法,通过将问题转化为对每个点分配一个[0,x]的权值,利用组合数学原理计算方案数,并通过DSU on tree和分治FFT优化算法,实现O(nlog(n)^3)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CF1010F Tree

首先这道题不是二叉树也可以做

题目要求一个点的权值必须比所有儿子都大,于是可以转换为对每一个点分配一个 [ 0 , x ] [0,x] [0,x] 的权值,最终权值是子树的和

这个的方案数只与集合大小有关
( x + S − 1 S − 1 ) \binom{x+S-1}{S-1} (S1x+S1)

于是问题转换为统计树上大小为 k k k 的连通块个数
已经可以 n 2 n^2 n2 d p dp dp

考虑到一个 d p dp dp 的最大维度是 s i z e [ u ] size[u] size[u],可以 d s u   o n   t r e e dsu\ on\ tree dsu on tree
所有轻儿子的 s i z e size size 和是 n l o g ( n ) nlog(n) nlog(n)
于是在每层结点可以暴力合并轻儿子,合并用分治 F F T FFT FFT,这一部分的复杂度是 O ( n l o g ( n ) 3 ) O(nlog(n)^3) O(nlog(n)3)

考虑重链如何合并,令 f u f_u fu 为最终的答案, g u g_u gu 为只考虑轻儿子的答案
(这里的 f , g f,g f,g 是写成生成函数过后的)
f u = g u ( f u + 1 + 1 ) = g u ( ( g u + 1 ( f u + 2 + 1 ) + 1 ) f_u=g_u(f_{u+1}+1)=g_u((g_{u+1}(f_{u+2}+1)+1) fu=gu(fu+1+1)=gu((gu+1(fu+2+1)+1)
考虑到当没有重儿子的时候 f = g f=g f=g
于是一个点 u u u f f f 可以看做 g u + g u ∗ g u + 1 + g u ∗ g u + 1 ∗ g u + 2 + . . . g_u+g_u*g_{u+1}+g_u*g_{u+1}*g_{u+2}+... gu+gugu+1+gugu+1gu+2+... 可以分治 F F T FFT FFT
这一部分的复杂度任然是 n l o g ( n ) 3 nlog(n)^3 nlog(n)3,最后用组合数算一下就可以了


#include<bits/stdc++.h>
#define cs const
using namespace std;
typedef long long ll;
cs int N = 1e5 + 5;
cs int Mod = 998244353;
int add(int a, int b){ return a + b >= Mod ? a + b - Mod : a + b; }
int mul(int a, int b){ return 1ll * a * b % Mod; }
int ksm(int a, int b){ int ans = 1; for(;b;b>>=1,a=mul(a,a)) if(b&1) ans = mul(ans, a); return ans; }
void Mul(int &a, int b){ a = mul(a, b); }
void Add(int &a, int b){ a = add(a, b); }
int dec(int a, int b){ return a - b < 0 ? a - b + Mod : a - b; }
#define pb push_back
#define poly vector<int>
poly a[N]; int inv[N];
void Cout(poly tt){
	for(int i = 0; i <tt.size(); i++) cout <<tt[i] <<" ";
	cout <<'\n';
}
namespace Poly{
	int bit, up, rev[N << 2];
	void init(int deg){
		up = 1; bit = 0; while(up <= deg) up <<= 1, ++bit;
		for(int i = 0; i < up; i++) rev[i] = (rev[i>>1]>>1)|((i&1)<<bit-1); 
	}
	cs int C = 19;
	poly w[C+1];
	void prework(){
		for(int i = 1; i <= C; i++) w[i].resize(1<<i-1);
		int wn = ksm(3, (Mod-1)/(1<<C)); w[C][0] = 1;
		for(int i = 1; i < (1<<C-1); i++) w[C][i] = mul(w[C][i-1], wn);
		for(int i = C-1; i; i--) for(int j = 0; j < (1<<i-1); j++) w[i][j] = w[i+1][j<<1];	
	}
	void NTT(poly &a, int typ){
		for(int i = 0; i < up; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
		for(int l = 1, i = 1; i < up; i <<= 1, ++l)
			for(int j = 0; j < up; j += (i<<1))
				for(int k = 0; k < i; k++){
					int x = a[k+j], y = mul(w[l][k], a[k+j+i]);
					a[k+j] = add(x, y); a[k+j+i] = dec(x, y);
				}
		if(typ == -1){
			reverse(a.begin() + 1, a.end());
			for(int i = 0, inv = ksm(up, Mod-2); i < up; i++) a[i] = mul(a[i], inv);
		}
	}
	poly operator * (poly a, poly b){
		int deg = a.size() + b.size() - 1;
		init(deg); a.resize(up); b.resize(up);
		NTT(a, 1); NTT(b, 1);
		for(int i = 0; i < up; i++) Mul(a[i], b[i]);
		NTT(a, -1); a.resize(deg); return a;
	}
	poly operator + (poly a, poly b){
		int deg = max(a.size(), b.size()); a.resize(deg); b.resize(deg);
		for(int i = 0; i < deg; i++) a[i] = add(a[i], b[i]); return a; 
	}
	void Solve(int l, int r, poly &F, poly &G){
	 	if(l == r){ F = G = a[l]; return; } int mid = (l+r) >> 1;
	 	poly Fl, Fr, Gl, Gr;
	 	Solve(l, mid, Fl, Gl); Solve(mid+1, r, Fr, Gr);
	 	F = Fl * Fr; G = Gl + Fl * Gr;
	}
}
int n; ll K;
vector<int> v[N]; 
int sz[N], son[N], fa[N];
void pre_dfs(int u, int f){
	sz[u] = 1; 
	for(int i = 0; i < v[u].size(); i++){
		int t = v[u][i]; if(t == f) continue; 
		fa[t] = u; pre_dfs(t, u); sz[u] += sz[t];
		if(sz[t] > sz[son[u]]) son[u] = t;
	}
}
poly f[N];
poly calc(int u){
	for(int t = u; t; t = son[t]){
		for(int i = 0; i < v[t].size(); i++) if((v[t][i] ^ fa[t]) && (v[t][i] ^ son[t])) f[t] = calc(v[t][i]);
		if(f[t].empty()) f[t].pb(0); ++f[t][0]; f[t].insert(f[t].begin(), 0);
	}
	int k = 0; 
	for(int t = u; t; t = son[t]) swap(a[++k], f[t]);
	poly F, G; Poly::Solve(1, k, F, G); return G;
}
int main(){
	scanf("%d%lld", &n, &K); Poly::prework();
	inv[0] = inv[1] = 1;
	for(int i = 2; i <= n; i++) inv[i] = mul(Mod-Mod/i, inv[Mod%i]); 
	for(int i = 1; i < n; i++){
		int x, y; scanf("%d%d", &x, &y); v[x].pb(y); v[y].pb(x);
	} pre_dfs(1, 0); poly g = calc(1);
	int Binom = 1, ans = 0;
	for(int i = 1; i < g.size(); i++){
		Add(ans, mul(Binom, g[i])); Mul(Binom, mul((K+i)%Mod, inv[i])); 
	} cout << ans; return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FSYo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值