Codeforces 1373D Maximum Sum on Even Positions(线性dp)

传送门

题意:给一个数组,问最多选一个子数组reverse一次之后最大的偶数位元素之和为多少。

题解:选一个长度为奇数的子数组reverse不改变答案。所以考虑reverse一个长度为偶数的子数组。大致乱搞思想:默认取偶数位时,选某一段区间连续取奇数位,最大和位多少,以及默认取奇数位时,选某一段连续取偶数位的最大和。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=2e5+4;
int n;
int a[N],t[N];
ll ans;
ll f[2][2][N>>1];//cur, used, pos
inline void smax(ll &x,ll y) {
	x=x<y?y:x;
}
inline int read() {
	int x=0,f=1;char c=getchar();
	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
	while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
	return x*f;
}
inline void clear(int tot) {
	for (register int i=1;i<=tot;++i) {
		f[0][0][i]=0;
		f[1][1][i]=0;
		f[0][1][i]=0;
	}
}
inline ll calc_od(int l,int r) {//default position is odd
	int tot=0;
	for (register int i=l;i<=r;++i) t[++tot]=a[i];
	ll ret=0;
	for (register int i=1;i<=tot;++i) {
		smax(f[0][0][i],f[0][0][i-1]+t[(i<<1)-1]);
		smax(f[1][1][i],max(f[1][1][i-1],f[0][0][i-1])+t[i<<1]);
		smax(f[0][1][i],max(f[0][1][i-1],f[1][1][i-1])+t[(i<<1)-1]);
	}
	smax(ret,f[0][0][r>>1]);
	smax(ret,f[1][1][r>>1]);
	smax(ret,f[0][1][r>>1]);
	clear(tot);
	return ret;
}
inline ll calc_ev(int l,int r) {//default position is even
	int tot=0;
	for (register int i=l;i<=r;++i) t[++tot]=a[i];
	ll ret=0;
	for (register int i=1;i<=tot;++i) {
		smax(f[0][0][i],f[0][0][i-1]+t[i<<1]);
		smax(f[1][1][i],max(f[1][1][i-1],f[0][0][i-1])+t[(i<<1)-1]);
		smax(f[0][1][i],max(f[0][1][i-1],f[1][1][i-1])+t[i<<1]);
	}
	smax(ret,f[0][0][r>>1]);
	smax(ret,f[1][1][r>>1]);
	smax(ret,f[0][1][r>>1]);
	clear(tot);
	return ret;
}
int main() {
//	freopen("in.txt","r",stdin);
	int kase=read();
	while (kase--) {
		ans=0;
		n=read();
		for (register int i=1;i<=n;++i) a[i]=read();
		if (n&1) {
			smax(ans,calc_od(1,n-1)+a[n]);
			smax(ans,calc_ev(2,n)+a[1]);
		} else {
			smax(ans,calc_od(1,n));
			smax(ans,calc_ev(2,n-1)+a[1]);
		}
		cout<<ans<<endl;
	}
	return 0;
}

 

区间DP是一种动态规划的方法,用于解决区间范围内的问题。在Codeforces竞赛中,区间DP经常被用于解决一些复杂的字符串或序列相关的问题。 在区间DP中,dp[i][j]表示第一个序列前i个元素和第二个序列前j个元素的最优解。具体的转移方程会根据具体的问题而变化,但是通常会涉及到比较两个序列的元素是否相等,然后根据不同的情况进行状态转移。 对于区间长度为1的情况,可以先进行初始化,然后再通过枚举区间长度和区间左端点,计算出dp[i][j]的值。 以下是一个示例代码,展示了如何使用区间DP来解决一个字符串匹配的问题: #include <cstdio> #include <cstring> #include <string> #include <iostream> #include <algorithm> using namespace std; const int maxn=510; const int inf=0x3f3f3f3f; int n,dp[maxn][maxn]; char s[maxn]; int main() { scanf("%d", &n); scanf("%s", s + 1); for(int i = 1; i <= n; i++) dp[i][i] = 1; for(int i = 1; i <= n; i++) { if(s[i] == s[i - 1]) dp[i][i - 1] = 1; else dp[i][i - 1] = 2; } for(int len = 3; len <= n; len++) { int r; for(int l = 1; l + len - 1 <= n; l++) { r = l + len - 1; dp[l][r] = inf; if(s[l] == s[r]) dp[l][r] = min(dp[l + 1][r], dp[l][r - 1]); else { for(int k = l; k <= r; k++) { dp[l][r] = min(dp[l][r], dp[l][k] + dp[k + 1][r]); } } } } printf("%d\n", dp[n]); return 0; } 希望这个例子能帮助你理解区间DP的基本思想和应用方法。如果你还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值