【codeforces gym101853E】Maximum Sum 状态dp经典问题

该博客探讨了如何使用状态动态规划(DP)解决一个矩阵问题,要求选取不相邻的点以最大化和。作者指出,通过预处理减少状态枚举的复杂度,将问题转化为O(n * 4e6)的时间复杂度,并提供了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://codeforces.com/gym/101853/problem/E

题意

给一个n×m的矩阵,要求选出一些点,使得这些点不相邻,同时这些点的和要最大。相邻的意义是,行或列或对角的距离等于1。
1 <= n <= 16

题解

一看到n的范围就想到状压dp,这和铺瓷砖很类似,就是一层一层的转移状态。如果直接暴力枚举状态的话复杂度是 O ( n ∗ 2 2 n ) O(n*2^{2n}) O(n22n),肯定要T的,遇到这种问题,就要想想如果只考虑单行,那么合法状态有多少种,直接提取出单行合法的进行转移,可以预处理出发现只有2000种,那么复杂度就降为 O ( n ∗ 4 e 6 ) O(n*4e6) O(n4e6)。同时还可以预处理出每行每种状态的权值和这样转移就只需要O(1)的时间。总时间复杂度是 O ( n ∗ 4 e 6 ) O(n*4e6) O(n4e6)

代码

#include <bits/stdc++.h>

using namespace std;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值