bzoj 2111(Lucas定理+递推)

传送门
题解:(由Po爷的题解修改来的)
考虑一个1~i的排列所构成的堆,l为左儿子大小,r为右儿子的大小
那么1一定是堆顶,左儿子和右儿子分别是一个子堆,显然如果选出size[l]个数给左儿子,左儿子的方案数是f[l],右儿子的方案数为f[r],可以得到f[i]=C(i-1,size[l])*f[l]*f[r]
P.S.如果为Lucas定理预处理逆元,那么需要考虑0,因为nn-mm可能等于0……所以如果时间卡得不紧,建议用费马小定理求逆元,这么比较稳当(´・ω・)ノ

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=1e6+2;
ll fac[MAXN],inv[MAXN],siz[MAXN<<1],f[MAXN],MOD;
int n;
inline void init() {
    memset(siz,0,sizeof(siz));
    fac[0]=1ll,inv[0]=inv[1]=1ll;//阶乘从0开始!!!
    for (register int i=1;i<=n&&i<MOD;++i) fac[i]=fac[i-1]*i%MOD;
    for (register int i=2;i<=n&&i<MOD;++i) inv[i]=(MOD-MOD/i)*inv[MOD%i]%MOD;
    for (register int i=2;i<=n&&i<MOD;++i) inv[i]=inv[i-1]*inv[i]%MOD;
}
inline ll lucas(ll n,ll m,ll p) {
    ll ret=1;
    while (n&&m) {
        ll nn=n%p,mm=m%p;
        if (nn<mm) return 0;
        ret=ret*fac[nn]*inv[nn-mm]%p*inv[mm]%p;
        n/=p,m/=p;
    }
    return ret;
}
int main() {
    scanf("%d%lld",&n,&MOD);
    init();
    for (register int i=n;i;--i) {
        siz[i]=siz[i<<1]+siz[i<<1|1]+1;
        f[i]=lucas(siz[i]-1,siz[i<<1],MOD)*((i<<1)>n?1:f[i<<1])%MOD*((i<<1|1)>n?1:f[i<<1|1])%MOD;
    }
    printf("%lld\n",f[1]);
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值