传送门
题解:设dp[j][i]表示前i个村庄建j个邮局的最小花费。先预处理dis[i][j]数组,表示i,j两村庄之间建一个邮局的最小花费(显然建在中位数位置最优)。
不要为什么这道题可以四边形优化。。。因为我也证不来。还有,这题的第三层for(int k……)枚举决策点的方式也是个谜,跟原先四边形优化的式子好像不太一样啊。。。如果哪位大神懂的话请在评论区“指点江山”orz。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=302,MAXM=32,INF=0x3f3f3f3f;
int m,n,pos[MAXN],dis[MAXN][MAXN];
int dp[MAXM][MAXN],s[MAXM][MAXN];
int main() {
// freopen("poj 1160.in","r",stdin);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;++i) scanf("%d",&pos[i]);
for (int i=1;i<=n;++i) {
dis[i][i]=0;
for (int j=i+1;j<=n;++j)
dis[i][j]=dis[i][j-1]+pos[j]-pos[(i+j)>>1];
}
memset(dp,INF,sizeof(dp));
for (int i=1;i<=n;++i)
dp[1][i]=dis[1][i],s[1][i]=0;//因为此时决策等价,所以让s尽量小,使后来区间可以遍历所有决策选最优
for (int j=2;j<=m;++j) {
s[j][n+1]=n;
for (int i=n;i>j;--i)
for (int k=s[j-1][i];k<=s[j][i+1];++k)//???
if (dp[j][i]>dp[j-1][k]+dis[k+1][i])
dp[j][i]=dp[j-1][k]+dis[k+1][i],s[j][i]=k;
}
printf("%d\n",dp[m][n]);
return 0;
}