poj 1160(四边形优化dp)

传送门
题解:设dp[j][i]表示前i个村庄建j个邮局的最小花费。先预处理dis[i][j]数组,表示i,j两村庄之间建一个邮局的最小花费(显然建在中位数位置最优)。
不要为什么这道题可以四边形优化。。。因为我也证不来。还有,这题的第三层for(int k……)枚举决策点的方式也是个谜,跟原先四边形优化的式子好像不太一样啊。。。如果哪位大神懂的话请在评论区“指点江山”orz。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=302,MAXM=32,INF=0x3f3f3f3f;
int m,n,pos[MAXN],dis[MAXN][MAXN];
int dp[MAXM][MAXN],s[MAXM][MAXN];
int main() {
//  freopen("poj 1160.in","r",stdin);
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;++i) scanf("%d",&pos[i]);
    for (int i=1;i<=n;++i) {
        dis[i][i]=0;
        for (int j=i+1;j<=n;++j)
            dis[i][j]=dis[i][j-1]+pos[j]-pos[(i+j)>>1];
    }
    memset(dp,INF,sizeof(dp));
    for (int i=1;i<=n;++i)
        dp[1][i]=dis[1][i],s[1][i]=0;//因为此时决策等价,所以让s尽量小,使后来区间可以遍历所有决策选最优
    for (int j=2;j<=m;++j) {
        s[j][n+1]=n;
        for (int i=n;i>j;--i)
            for (int k=s[j-1][i];k<=s[j][i+1];++k)//???
                if (dp[j][i]>dp[j-1][k]+dis[k+1][i])
                    dp[j][i]=dp[j-1][k]+dis[k+1][i],s[j][i]=k;
    }
    printf("%d\n",dp[m][n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值