题意:一棵树 N 个结点的树,有 M 次查询:树上三个点到哪个点的距离之和最小。
题解:
求(a,b)(b,c)(c,a)三对点的LCA,深度最深的那个即使答案:
下面口胡一下证明过程:
三个LCA如果发生重合,那么显然上述做法正确,不再赘述。
如果三个LCA互不相同,那么它们一定可以组成一个二叉结构,从将最浅的LCA作为答案,将其往另外两个移动,每移动一次距离之和+1-2。显然移动到最深的那个LCA可以最小化距离之和,到达最深LCA后若再移动则反而会增大距离之和,所以最深LCA即所求点。
P.S.为数不多的本蒟蒻卡不下来的大常数代码,估计跑得比我快1/3的都是tarjan求LCA而非倍增。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=5e5+4;
int head[MAXN],etot=0;
struct EDGE {
int v,nxt;
}e[MAXN<<1];
int n,m,f[20][MAXN],dep[MAXN]={0};
inline int read() {
int x=0;char c=getchar();
while (c<'0'||c>'9') c=getchar();
while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
return x;
}
inline void adde(int u,int v) {
e[etot].nxt=head[u],e[etot].v=v,head[u]=etot++;
e[etot].nxt=head[v],e[etot].v=u,head[v]=etot++;
}
void dfs(int p,int fa) {
dep[p]=dep[fa]+1,f[0][p]=fa;
for (int i=head[p];~i;i=e[i].nxt) {
int v=e[i].v;
if (v^fa) dfs(v,p);
}
}
inline void da() {
for (int j=1;(1<<j)<=n;++j)
for (register int i=1;i<=n;++i)
f[j][i]=f[j-1][f[j-1][i]];
}
inline int LCA(int x,int y) {
if (dep[x]<dep[y]) x^=y^=x^=y;
int t=dep[x]-dep[y];
for (int i=0;i<20;++i)
if (t&(1<<i)) x=f[i][x];
if (x==y) return x;
for (int i=19;~i;--i)
if (f[i][x]^f[i][y]) x=f[i][x],y=f[i][y];
return f[0][x];
}
inline int dis(int x,int y) {
return dep[x]+dep[y]-(dep[LCA(x,y)]<<1);
}
int main() {
// freopen("bzoj 1787.in","r",stdin);
memset(head,-1,sizeof(head));
n=read(),m=read();
for (register int i=1;i<n;++i) {
int u=read(),v=read();
adde(u,v);
}
dfs(1,0);
da();
for (register int t=0;t<m;++t) {
int a=read(),b=read(),c=read();
int x=LCA(a,b),y=LCA(b,c),z=LCA(c,a);
if (dep[x]>=dep[y]&&dep[x]>=dep[z]) {printf("%d %d\n",x,dep[a]-dep[x]+dep[b]-dep[x]+dis(x,c));continue;}
if (dep[y]>=dep[x]&&dep[y]>=dep[z]) {printf("%d %d\n",y,dep[b]-dep[y]+dep[c]-dep[y]+dis(y,a));continue;}
if (dep[z]>=dep[x]&&dep[z]>=dep[y]) {printf("%d %d\n",z,dep[c]-dep[z]+dep[a]-dep[z]+dis(z,b));continue;}
}
return 0;
}