【BZOJ1087】状压dp

题意十分好懂

分析
看到题目,上来敲了个爆搜,结果样例都过不去…dfs水平有待提高…

仔细分析之后发现,虽然棋盘看起来很小,只有9*9,但是状态数目极多,所以暴力是不可能过的。
所以这个题目应该是个dp题。

dp应该怎么dp呢?
如果我们知道了上一行是怎么摆放的,我们也就知道了前i行一共有多少个棋子。那么下一行我们就可以推出来了。
这就是本题的dp的转移。

于是,我们来到了本篇文章的重点部分:状态压缩。

状态压缩,顾名思义,就是把状态给压缩了(花鸡)。

读者:你这不是废话吗?简直就是在开玩笑。
笔者:好了好了,不开玩笑,状态压缩的意思是,将复杂的状态变成一个数字。

举个栗子,在本题中,状态极多极复杂, 如果我们用数组来记录状态的话,我们要记录,这一行到底哪些用过了哪些没用过,我们的数组会变得十分的丑陋,状态转移的时候也很麻烦(敲很多字)

例如本题,我们要记录某一行是怎么摆放的,我们的数组要开成这个样子:
dp[i][j][a][b][c][d][e][f][g][h][k]
???
是不是看了之后想直呼我勒个去。
而且这样子的话,判断摆放是否合法的时候就要(手!动!判!断!)

那么我们可以不可以换一种方法来保存摆放的状态呢?
很显然,在这一题中我们可以用二进制来表示状态。

由于一共只有9位,那么二进制状态最大也不会超过512.

我们的二进制状态10101010 (2),1表示放了棋子,0表示没有放。
那么判断合法的时候:对于第j个状态和第k个状态:
sit[k]&sit[j] //上下
(sit[j]<<1)&sit[k]
sit[j]&(sit[k]<<1) //斜着
是不合法的。很好理解。

于是我们就可以先dfs预处理出行的状态。
然后dp的时候我们判断列是否满足。

设dp[i][s][j]表示前i行一共放了s个棋子,现在第i行的状态是第j个的情况。

那么dp[i][s][j] += dp[i-1][s-num[j]][k]。
其中num[j]表示某一行的第j个状态可以放多少个棋子,k表示上一行的状态。

最后统计答案的时候我们枚举一下最后一行是怎么放的就可以了。

于是这个题就做完了。

#include <bits/stdc++.h>
using namespace std;
long long dp[10][100][1000];
long long sit[1000],num[1000];
int n,K,cnt = 0;
void dfs(int stg,long long sum,int now)
{
	if(now>=n)
	{
		sit[++cnt] = stg;
		num[cnt] = sum;
		return;
	}	
	dfs(stg,sum,now+1);
	dfs(stg+(1<<now),sum+1,now+2);
}
int main()
{
	scanf("%d%d",&n,&K);
	dfs(0,0,0);
	for(int i=1;i<=cnt;i++) dp[1][num[i]][i] = 1;
	for(int i=2;i<=n;i++)
	{
		for(int j=1;j<=cnt;j++)
		{
			for(int k=1;k<=cnt;k++)
			{
				if(sit[k]&sit[j]) continue;
				if((sit[k]<<1)&sit[j]) continue;
				if(sit[k]&(sit[j]<<1)) continue;
				for(int s=K;s>=num[j];s--) dp[i][s][j] += dp[i-1][s-num[j]][k];
			}
		}
	}
	long long ans = 0;
	for(int i=1;i<=cnt;i++) ans += dp[n][K][i];
	printf("%lld\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值