BZOJ1879bill的挑战——状压DP

Description
这里写图片描述
Input

本题包含多组数据。
第一行:一个整数T,表示数据的个数。
对于每组数据:
第一行:两个整数,N和K(含义如题目表述)。
接下来N行:每行一个字符串。
T ≤ 5,M ≤ 15,字符串长度≤ 50。
Output

如题

Sample Input

5

3 3

???r???

???????

???????

3 4

???????

?????a?

???????

3 3

???????

?a??j??

????aa?

3 2

a??????

???????

???????

3 2

???????

???a???

????a??
Sample Output

914852

0

0

871234

67018


这道题一看就是状压DP,然而我们很难直接推出。我们可以换一个思路,先预处理出数组g。
数组g[i][j]表示字符串到第i位,并且这位上选择小写字母j所符合的个数。(用二进制表示)那么我们可以推出g[i][j]的表示方式:
for(int i=0;i<len;i++)
         for(int j=0;j<26;j++)
          for(int k=1;k<=n;k++) if(s[k][i]=='?'||s[k][i]==(j+'a')) g[i][j]|=1<<k-1;
我们预处理出g数组之后就可以发现一个DP了:
f[(1<<n)-1][0]=1;
        for(int i=0;i<len;i++)
         for(int j=0;j<(1<<n);j++)
          if(f[j][i]) for(int k=0;k<26;k++) f[j&g[i][k]][i+1]=(f[j&g[i][k]][i+1]+f[j][i])%md;
        ans=0;
这个DP的f[i][j]表示二进制状态为i,dp到第j位时的方案数,最后输出所有的f[i][len],其中i满足二进制下有k个1即可。
#include<bits/stdc++.h>
#define md 1000003
using namespace std;
int read(){
    char c;int x;while(c=getchar(),c<'0'||c>'9');x=c-'0';
    while(c=getchar(),c>='0'&&c<='9') x=x*10+c-'0';return x;
} 
int T,n,m,len,ans,g[105][105],f[1<<15][105];
string s[105];
int main()
{
    T=read();
    while(T--){
        n=read();m=read();
        memset(g,0,sizeof(g));memset(f,0,sizeof(f));
        for(int i=1;i<=n;i++) cin>>s[i];
        len=s[1].length();
        for(int i=0;i<len;i++)
         for(int j=0;j<26;j++)
          for(int k=1;k<=n;k++) if(s[k][i]=='?'||s[k][i]==(j+'a')) g[i][j]|=1<<k-1;
        f[(1<<n)-1][0]=1;
        for(int i=0;i<len;i++)
         for(int j=0;j<(1<<n);j++)
          if(f[j][i]) for(int k=0;k<26;k++) f[j&g[i][k]][i+1]=(f[j&g[i][k]][i+1]+f[j][i])%md;
        ans=0;
        for(int i=0;i<(1<<n);i++){
            int p=i,sum=0;
            while(p){sum+=p&1;p>>=1;}
            if(sum==m) ans=(ans+f[i][len])%md;
        }
        printf("%d\n",ans);
    }
    return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值