Pipe
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1135 Accepted Submission(s): 434
Problem Description
经过激烈的争夺,Lele终于把那块地从Yueyue的手里抢了回来。接下来,Lele要开始建造他的灌溉系统。
通过咨询Lele的好友——化学系的TT,Lele决定在田里挖出N条沟渠,每条沟渠输送一种肥料。
每条沟渠可以看作是一条折线,也就是一系列线段首尾连接而成(除了第一条线段开头和最后一条线段的结尾)。由于沟渠很细,你可以忽略掉它的宽度。
由于不同的肥料之间混合会发生化学反应,所以修建的沟渠与沟渠之间不能相交。
现在TT给Lele画了一些设计图,Lele请你判断一下设计图中的沟渠与沟渠之间是否有相交。
通过咨询Lele的好友——化学系的TT,Lele决定在田里挖出N条沟渠,每条沟渠输送一种肥料。
每条沟渠可以看作是一条折线,也就是一系列线段首尾连接而成(除了第一条线段开头和最后一条线段的结尾)。由于沟渠很细,你可以忽略掉它的宽度。
由于不同的肥料之间混合会发生化学反应,所以修建的沟渠与沟渠之间不能相交。
现在TT给Lele画了一些设计图,Lele请你判断一下设计图中的沟渠与沟渠之间是否有相交。
Input
本题目包含多组测试,请处理到文件结束(EOF)。
每组测试的第一行有一个正整数N(0<N<30),表示管道的数目。接下来给出这N条管道的信息。
对于每条管道,第一行是一个正整数K(0<K<100),表示这条管道是由K个端点组成。
接下来的K行给出这K个端点信息。每个端点占一行,用两个整数X和Y(0<X,Y<1000)分别表示这个端点的横坐标和纵坐标的值。
每组测试的第一行有一个正整数N(0<N<30),表示管道的数目。接下来给出这N条管道的信息。
对于每条管道,第一行是一个正整数K(0<K<100),表示这条管道是由K个端点组成。
接下来的K行给出这K个端点信息。每个端点占一行,用两个整数X和Y(0<X,Y<1000)分别表示这个端点的横坐标和纵坐标的值。
Output
对于每组测试,如果该测试管道与管道之间有相交的话,输出"Yes",否则输出"No"。
Sample Input
2 2 0 0 1 1 2 0 1 1 0 2 2 0 0 1 1 2 1 0 2 1 2 3 0 0 1 1 2 1 2 2 0 3 0
Sample Output
Yes No No
Author
Linle
Source
Recommend
#include <iostream>
#include <string.h>
using namespace std;
struct point
{
double x,y;
};
struct segment
{
point begin,end;
int father;
};
double min(double x,double y)
{
return x<y?x:y;
}
double max(double x,double y)
{
return x>y?x:y;
}
bool onsegment(point pi,point pj,point pk) //判断点pk是否在线段pi pj上
{
if(min(pi.x,pj.x)<=pk.x&&pk.x<=max(pi.x,pj.x))
{
if(min(pi.y,pj.y)<=pk.y&&pk.y<=max(pi.y,pj.y))
{
return true;
}
}
return false;
}
double direction(point pi,point pj,point pk) //计算向量pkpi和向量pjpi的叉积
{
return (pi.x-pk.x)*(pi.y-pj.y)-(pi.y-pk.y)*(pi.x-pj.x);
}
bool judge(point p1,point p2,point p3,point p4,int father1,int father2) //判断线段p1p2和p3p4是否相交
{
if(father1==father2)
return false;
double d1 = direction(p3,p4,p1);
double d2 = direction(p3,p4,p2);
double d3 = direction(p1,p2,p3);
double d4 = direction(p1,p2,p4);
if(d1*d2<0&&d3*d4<0)
return true;
if(d1==0&&onsegment(p3,p4,p1))
return true;
if(d2==0&&onsegment(p3,p4,p2))
return true;
if(d3==0&&onsegment(p1,p2,p3))
return true;
if(d4==0&&onsegment(p1,p2,p4))
return true;
return false;
}
segment seg[3005];
point temp[101];
int main()
{
int n,count; //n是管道的数量,管道里可能有折点,count代表交点数
int nn; //nn 代表没有折点的线段的数量
while(cin>>n&&n)
{
memset(seg,0,sizeof(seg));
memset(temp,0,sizeof(temp));
nn=0;
count = 0;
for(int k=1; k<=n; k++) //输入数据
{
int p_num;//number of points
cin>>p_num;
for(int j=1;j<=p_num;++j)
{
cin>>temp[j].x>>temp[j].y;//输入构成折线的点
}
for(int i=1;i<p_num;++i)
{
++nn;
seg[nn].begin.x=temp[i].x;//temp的下标是i ,当时我不小心写成nn,结果调试半天
seg[nn].begin.y=temp[i].y;
seg[nn].end.x=temp[i+1].x;
seg[nn].end.y=temp[i+1].y;
seg[nn].father=k; //用father表示在同一条弯道(折线)的线段
}
}
for(int i=1; i<nn; i++) //处理数据
{
for(int j=i+1; j<=nn; j++)
{
if(judge(seg[i].begin,seg[i].end,seg[j].begin,seg[j].end,seg[i].father,seg[j].father))
{
count++;
}
}
}
if(count)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
return 0;
}