经过激烈的争夺,Lele终于把那块地从Yueyue的手里抢了回来。接下来,Lele要开始建造他的灌溉系统。通过咨询Lele的好友——化学系的TT,Lele决定在田里挖出N条沟渠,每条沟渠输送一种肥料。每条沟渠可以看作是一条折线,也就是一系列线段首尾连接而成(除了第一条线段开头和最后一条线段的结尾)。由于沟渠很细,你可以忽略掉它的宽度。由于不同的肥料之间混合会发生化学反应,所以修建的沟渠与沟渠之间不能相交。现在TT给Lele画了一些设计图,Lele请你判断一下设计图中的沟渠与沟渠之间是否有相交。
输入
Input
本题目包含多组测试,请处理到文件结束(EOF)。
每组测试的第一行有一个正整数N(0<N<30),表示管道的数目。接下来给出这N条管道的信息。
对于每条管道,第一行是一个正整数K(0<K<100),表示这条管道是由K个端点组成。
接下来的K行给出这K个端点信息。每个端点占一行,用两个整数X和Y(0<X,Y<1000)分别表示这个端点的横坐标和纵坐标的值。Output
对于每组测试,如果该测试管道与管道之间有相交的话,输出"Yes",否则输出"No"。
样例:
Sample Input
2 2 0 0 1 1 2 0 1 1 0 2 2 0 0 1 1 2 1 0 2 1 2 3 0 0 1 1 2 1 2 2 0 3 0Sample Output
Yes No No
题意:判断给的n条管道(每个管道k个端点,每个点给出横纵坐标)是否相交
code:
#include<stdio.h>
#include<algorithm>
using namespace std;
const int N=1e5+10;
typedef long long ll;
#include<string.h>
#include<math.h>
#define mem(a,b) memset(a,b,sizeof(a))
int n,num[110];
struct node
{
double x,y;
} p[35][110];
double xx(node a,node b,node c)///ba叉乘ca
{
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
bool find(node a,node b,node c,node d)///判断两线段相交
{
if(min(a.x,b.x)<=max(c.x,d.x)&&min(c.x,d.x)<=max(a.x,b.x)///排斥
&&min(a.y,b.y)<=max(c.y,d.y)&&min(c.y,d.y)<=max(a.y,b.y)
&&xx(a,b,c)*xx(a,b,d)<0&&xx(c,d,a)*xx(c,d,b)<0)///跨立
return 1;///叉乘异号说明在两侧
return 0;
}
bool solve()///暴力枚举每条折线的每条线段是否相交
{
for(int i=0; i<n-1; i++)
{
for(int j=i+1; j<n; j++)
{
for(int k=1; k<num[i]; k++)
{
for(int m=1; m<num[j]; m++)
{
if(find(p[i][k-1],p[i][k],p[j][m-1],p[j][m]))
return 1;
}
}
}
}
return 0;
}
int main()
{
while(~scanf("%d",&n))
{
for(int i=0; i<n; i++)
{
scanf("%d",&num[i]);
for(int j=0; j<num[i]; j++)
scanf("%lf%lf",&p[i][j].x,&p[i][j].y);
}
if(n==1)printf("No\n");
else
{
int flag=solve();
if(flag==0)printf("No\n");
else printf("Yes\n");
}
}
return 0;
}