第八章 贪心算法
理论基础
1 什么是贪心?
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
举一个例子:
例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
指定每次拿最大的,最终结果就是拿走最大数额的钱。
每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。
再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。
2 贪心的套路(什么时候用贪心)
贪心算法并没有固定的套路。
所以唯一的难点就是如何通过局部最优,推出整体最优。
那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?
不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。
有同学问了如何验证可不可以用贪心算法呢?
最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。
一般数学证明有如下两种方法:
数学归纳法
反证法
面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了。
刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心。
贪心一般解题步骤
贪心算法一般分为如下四步:
- 将问题分解为若干个子问题
- 找出适合的贪心策略
- 求解每一个子问题的最优解
- 将局部最优解堆叠成全局最优解
贪心没有套路,说白了就是常识性推导加上举反例。
455.分发饼干
假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
思路: 双指针法 + 贪心 + 排序
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
1、可以先对给的两个数组进行排序,那么得到的数组就是一个有序数组
2、通过从后向前遍历,这里的理解是:当我把最大的“胃口”满足了以后,我再向前移动,直到不能满足每一个。
3、遍历的是“胃口”而不是饼干,遍历饼干会导致出错
代码中用了一个index来控制饼干遍历的数组,,遍历饼干并没有再起一个for循环,而是采用自减的方式,这也是常用的技巧。(这个技巧挺关键的,需要经常)
// 版本一
// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int index = s.size() - 1; // 饼干数组的下标
int result = 0;
for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
result++;
index--;
}
}
return result;
}
};
总结: 贪心算法再一定程度上比较难想,但是这道题属于入门题,重要的还是要想清楚局部最优,想清楚全局最优,感觉局部最优是可以推出全局最优,并想不出反例,那么就试一试贪心。
376. 摆动序列 (动态规划的时候再用动态规划解决本题)
思路: 一刷没什么思路,主要还是通过看视频得到思路:
1、定义两个变量,分别判断左右两边的坡度,当出现一个为正一个为负的时候表明此时有摆动,需要记录摆动。
2、数组首尾两端的的时候,此时定义的前一个变量,我们定义了一个初值为0,可以类比为它前面有个相同的值,没有坡度,也可以满足上面的条件
3、单调有平坡,就是一直是王上的情况,中间出现平坡,如果我们每次判断都更新了前一个坡度,那么就会导致这种情况报错,我们只需要在记录返回值的时候再对前一个坡度进行调整。
用prediff和curdiff来比较,这个办法需要多练习才能解决:
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if (nums.size() <= 1) return nums.size();
int curDiff = 0; // 当前一对差值
int preDiff = 0; // 前一对差值
int result = 1; // 记录峰值个数,序列默认序列最右边有一个峰值
for (int i = 0; i < nums.size() - 1; i++) {
curDiff = nums[i + 1] - nums[i];
// 出现峰值
if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
result++;
preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff
}
}
return result;
}
};
总结: 看完视频不难,但是自己做的时候还是会感觉比较不容易想,三种情况很难能一次性讨论完。
本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平坡,如图:
思路2 动态规划(学到动态规划的时候再来解决本次问题)
53. 最大子序和
题目链接
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
思路: :
1、贪心算法
用一个变量记录连续和,当出现负数的时候我们整个抛弃这个结果,然后从下一个开始继续求连续和
用另外一个变量记录结果,当连续和大于当前的这个结果,那么就更新,最后返回
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int result = INT32_MIN;
int count = 0;
for (int i = 0; i < nums.size(); i++) {
count += nums[i];
if (count > result) result = count;
if (count < 0) count = 0; // 赋值为0 是为了从下一个nums[i] 开始 count += nums[i];
}
return result;
}
};
总结 因为这道题之前做过,所以还有一点印象,不过那个时候还不知道具体的每种算法名字,所以现在来整体解释一下。
这道题还有动态规划解法,到后面专题了再来解决一次。