代码随想录算法训练营第三十一天|贪心算法 理论基础 455.分发饼干 376. 摆动序列 53. 最大子序和

文章介绍了贪心算法的概念,强调选择局部最优以达到全局最优,并通过分发饼干、摆动序列和最大子序和等题目来说明贪心算法的应用。在确定是否使用贪心时,可以通过举反例和手动模拟。文章还提及动态规划作为解决某些问题的替代方法。
摘要由CSDN通过智能技术生成

第八章 贪心算法

理论基础

1 什么是贪心?
贪心的本质是选择每一阶段的局部最优,从而达到全局最优。
举一个例子:

例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?
指定每次拿最大的,最终结果就是拿走最大数额的钱。
每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。
再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。

2 贪心的套路(什么时候用贪心)
贪心算法并没有固定的套路。
所以唯一的难点就是如何通过局部最优,推出整体最优。

那么如何能看出局部最优是否能推出整体最优呢?有没有什么固定策略或者套路呢?

不好意思,也没有! 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。
有同学问了如何验证可不可以用贪心算法呢?

最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧。

一般数学证明有如下两种方法:

数学归纳法
反证法

面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了。
刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心。

贪心一般解题步骤
贪心算法一般分为如下四步:

  1. 将问题分解为若干个子问题
  2. 找出适合的贪心策略
  3. 求解每一个子问题的最优解
  4. 将局部最优解堆叠成全局最优解

贪心没有套路,说白了就是常识性推导加上举反例。

455.分发饼干

题目链接

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

在这里插入图片描述
思路: 双指针法 + 贪心 + 排序
这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。

1、可以先对给的两个数组进行排序,那么得到的数组就是一个有序数组
2、通过从后向前遍历,这里的理解是:当我把最大的“胃口”满足了以后,我再向前移动,直到不能满足每一个。
3、遍历的是“胃口”而不是饼干,遍历饼干会导致出错

代码中用了一个index来控制饼干遍历的数组,,遍历饼干并没有再起一个for循环,而是采用自减的方式,这也是常用的技巧。(这个技巧挺关键的,需要经常)

// 版本一 
// 时间复杂度:O(nlogn)
// 空间复杂度:O(1)
class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口 
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干 
                result++;
                index--;
            }
        }
        return result;
    }
};

总结: 贪心算法再一定程度上比较难想,但是这道题属于入门题,重要的还是要想清楚局部最优,想清楚全局最优,感觉局部最优是可以推出全局最优,并想不出反例,那么就试一试贪心

376. 摆动序列 (动态规划的时候再用动态规划解决本题)

题目链接

在这里插入图片描述
思路: 一刷没什么思路,主要还是通过看视频得到思路:
1、定义两个变量,分别判断左右两边的坡度,当出现一个为正一个为负的时候表明此时有摆动,需要记录摆动。
2、数组首尾两端的的时候,此时定义的前一个变量,我们定义了一个初值为0,可以类比为它前面有个相同的值,没有坡度,也可以满足上面的条件
3、单调有平坡,就是一直是王上的情况,中间出现平坡,如果我们每次判断都更新了前一个坡度,那么就会导致这种情况报错,我们只需要在记录返回值的时候再对前一个坡度进行调整。

用prediff和curdiff来比较,这个办法需要多练习才能解决:

class Solution {
public:
    int wiggleMaxLength(vector<int>& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0; // 当前一对差值
        int preDiff = 0; // 前一对差值
        int result = 1;  // 记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i + 1] - nums[i];
            // 出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result++;
                preDiff = curDiff; // 注意这里,只在摆动变化的时候更新prediff 
            }
        }
        return result;
    }
};

总结: 看完视频不难,但是自己做的时候还是会感觉比较不容易想,三种情况很难能一次性讨论完。
本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平坡,如图:

在这里插入图片描述
思路2 动态规划(学到动态规划的时候再来解决本次问题)

53. 最大子序和

题目链接
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

思路:

1、贪心算法
用一个变量记录连续和,当出现负数的时候我们整个抛弃这个结果,然后从下一个开始继续求连续和
用另外一个变量记录结果,当连续和大于当前的这个结果,那么就更新,最后返回

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;

        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) result = count;
            if (count < 0) count = 0; // 赋值为0 是为了从下一个nums[i] 开始  count += nums[i];
        }
        return result;
    }
};

总结 因为这道题之前做过,所以还有一点印象,不过那个时候还不知道具体的每种算法名字,所以现在来整体解释一下。

这道题还有动态规划解法,到后面专题了再来解决一次。

第二十二算法训练营主要涵盖了Leetcode题目中的三道题目,分别是Leetcode 28 "Find the Index of the First Occurrence in a String",Leetcode 977 "有序数组的平方",和Leetcode 209 "长度最小的子数组"。 首先是Leetcode 28题,题目要求在给定的字符串中找到第一个出现的字符的索引。思路是使用双指针来遍历字符串,一个指向字符串的开头,另一个指向字符串的结尾。通过比较两个指针所指向的字符是否相等来判断是否找到了第一个出现的字符。具体实现的代码如下: ```python def findIndex(self, s: str) -> int: left = 0 right = len(s) - 1 while left <= right: if s[left == s[right]: return left left += 1 right -= 1 return -1 ``` 接下来是Leetcode 977题,题目要求对给定的有序数组中的元素进行平方,并按照非递减的顺序返回结果。这里由于数组已经是有序的,所以可以使用双指针的方法来解决问题。一个指针指向数组的开头,另一个指针指向数组的末尾。通过比较两个指针所指向的元素的绝对值的大小来确定哪个元素的平方应该放在结果数组的末尾。具体实现的代码如下: ```python def sortedSquares(self, nums: List[int]) -> List[int]: left = 0 right = len(nums) - 1 ans = [] while left <= right: if abs(nums[left]) >= abs(nums[right]): ans.append(nums[left ** 2) left += 1 else: ans.append(nums[right ** 2) right -= 1 return ans[::-1] ``` 最后是Leetcode 209题,题目要求在给定的数组中找到长度最小的子数组,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值