一、贪心算法理论基础
贪心算法:对于一个问题,通过做出若干次决策来解决,在其中的每一步决策中只选取当前情况下的局部最优解,这样每一步的局部最优解可以组合成为原问题的整体最优解,这样的算法称为贪心算法。
使用贪心算法需要满足最优子结构性质和贪心选择性质。
对于贪心算法的使用比贪心算法的构建要容易一些,需要先判断该问题能否满足贪心选择性质(数学归纳法,反证法)。贪心算法的构建根据每一步的最优,直觉地选择答案即可编写出贪心算法。
对于具体的使用情形,仍然需要一定的经验和对问题的敏感度(即,刷题)来评判。那么开始刷题吧。
二、LeetCode 455.分发饼干
题目链接:LeetCode 455.分发饼干
文章讲解:代码随想录
视频讲解:贪心算法,你想先喂哪个小孩?| LeetCode:455.分发饼干
思路
本题的贪心选择策略较为显而易见,我们需要让满足的孩子数量尽可能的多,那么我们可以优先用小饼干去满足胃口最小的孩子,将较大的饼干留给胃口大的孩子。即从小到大遍历饼干,直到饼干可以满足当前没有吃到饼干的最小胃口的孩子为止。
C++代码
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
sort(g.begin(), g.end());//饼干和孩子胃口进行排序
sort(s.begin(), s.end());
int kid = 0, cookie = 0;
while(kid < g.size() && cookie < s.size()){
//从小到大遍历饼干和孩子胃口
if(s[cookie] >= g[kid]){
kid++;
cookie++;
}
else cookie++;
}
return kid;
}
};
三、LeetCode 376. 摆动序列
题目链接:LeetCode 376. 摆动序列
文章讲解:代码随想录
视频讲解:贪心算法,寻找摆动有细节!| LeetCode:376.摆动序列
思路
要求返回可以被构造出的最长的摆动序列长度,笔者初刷的思路为:设置len
记录当前摆动序列长度;b
为序列指针,指示当前判定的数字;设置布尔值diff
来判断下一个数应该是正数还是负数。diff
的初始值取决于序列第一个数,算法进行时仅需要每次取出b
位置的数字,对照diff
指示的正负进行比对即可,若符合,则len++
,否则不变,最后返回len
作为摆动序列的长度。
C++代码
一刷代码
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if(nums.size() == 1) return 1;
int len = 2, b = 1;
bool diff;
while(b < nums.size() && nums[b] == nums[b-1]){
b++;
}
if(b == nums.size()) return 1;
if(nums[b] > nums[b-1]) diff = false;
else diff = true;
for(int i = b+1; i < nums.size(); i++){
if(diff && nums[i] > nums[i-1] || !diff && nums[i] < nums[i-1]){
len++;
diff = !diff;
}
}
return len;
}
};
四、LeetCode 53. 最大子序和
题目链接:LeetCode 53. 最大子序和
文章讲解:代码随想录
视频讲解:贪心算法的巧妙需要慢慢体会!LeetCode:53. 最大子序和
思路
本题的贪心思路主要在两个方面:
- 在数组中,只选择正数作为子数组开始位置;
- 每当当前的数组总和小于
0
0
0 时,将
sum
置 0 0 0 ,并重新选取子数组的开头.
两个贪心选择规则都能保证选取到最优的子数组总和,并且每当出现更大的sum
时,将更优值记录在max
中,最终输出max
即可。
C++代码
class Solution {
private:
int sum;
int max = INT_MIN;
public:
int maxSubArray(vector<int>& nums) {
sum = nums[0];
max = nums[0];
for(int i = 1; i < nums.size(); i++){
if(sum < 0){
sum = 0;
}
sum += nums[i];
if(sum > max) max = sum;
}
return max;
}
};
总结
贪心算法的设计思路有待琢磨
文章图片来源:代码随想录 (https://programmercarl.com/)