神经网络拟合函数曲线--pytorch

前言

之前看了很多神经网络的算法,但是一直没有实操作过,加上对pytorch 不太熟悉,趁此机会熟悉一下。

拟合二次函数

拟合的目标函数是y=x*x+1;  再加上一些随机噪声。

由于函数比较简单 使用的神经网络。一个全连接层 + RELU 激活函数层+ 一个全连接输出层。实验结果如下:

拟合函数曲线和实际的函数曲线拟合的很好。

代码如下,由于比较简单,不再赘述太多。

#参考链接: https://blog.csdn.net/qq_37333048/article/details/110469670

# 神经网络的搭建--回归任务 #
import torch
import torch.nn.functional as F     # 激励函数都在这
import matplotlib.pyplot as plt

# 建立数据
x = torch.unsqueeze(torch.linspace(-6.24,6.28, 900), dim=1)  # x data (tensor), shape=(100, 1)
y = 2*x.pow(2) + 1 + 0.2*torch.rand(x.size())                 # noisy y data (tensor), shape=(100, 1)
# y = torch.sin(x) +  0.1*torch.rand(x.size())

# 建立神经网络  这个神经网络 用于拟合 二次函数 有不错的
class Net(torch.nn.Module):  # 继承 torch 的 Module
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()     # 继承 __init__ 功能
        # 定义每层用什么样的形式
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出
        self.predict = torch.nn.Linear(n_hidden, n_output)   # 输出层线性输出

    def forward(self, x):   # 这同时也是 Module 中的 forward 功能
        # 正向传播输入值, 神经网络分析出输出值
        x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)
        x = self.predict(x)             # 输出值
        return x
net = Net(n_feature=1, n_hidden=10, n_output=1)

print(net)  # net 的结构


# 训练网络
# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.002)  # 传入 net 的所有参数, 学习率
# optimizer = torch.optim.Adam(net.parameters(),lr=0.002)
loss_func = torch.nn.MSELoss()      # 预测值和真实值的误差计算公式 (均方差)

plt.ion()   # 画图
plt.show()

epoch_nums = 100000
index_list = []
loss_list = []
accuray_list = []

for t in range(epoch_nums):
    # prediction = net(x)     # 喂给 net 训练数据 x, 输出预测值
    prediction= net.forward(x)
    # print(prediction[:10])
    # print(f1[:10])

    loss = loss_func(prediction, y)     # 计算两者的误差

    optimizer.zero_grad()   # 清空上一步的残余更新参数值
    loss.backward()         # 误差反向传播, 计算参数更新值
    optimizer.step()        # 将参数更新值施加到 net 的 parameters 上

    loss_list.append(loss.data.numpy())
    index_list.append(t)

    # 可视化训练过程
    # if t % 100 == 0:
    #     # print(prediction)
    #     # print(net.forward(x))
    #     plt.cla()
    #     plt.scatter(x.data.numpy(), y.data.numpy())
    #     plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
    #     plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})
    #     # if t<500:
    #     plt.pause(0.1)
    #     # else:
    #     #     plt.pause(1)

plt.cla()
plt.subplot(2,1,1)
plt.scatter(x.data.numpy(), y.data.numpy(),label = 'raw_data')
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5, label = 'fit_data')
plt.legend()
plt.subplot(2,1,2)
plt.plot(index_list, loss_list, label= 'loss')
plt.legend()
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color':  'red'})

拟合三角函数 sin 函数

        接下来想看看 一个神经网络的上限在哪里,保持网络结构不变,拟合三角函数(-2*pi, 2*pi).

拟合结果如下:

虽然loss 最后也收敛了,但是拟合的结果 不是很理想。尝试调试了学习率,变换优化器但是结果都不是很理想。所以参考文章,调整了网络结构。调整之后的结构如下:

Net(
  (net): Sequential(
    (0): Linear(in_features=1, out_features=10, bias=True)
    (1): ReLU()
    (2): Linear(in_features=10, out_features=100, bias=True)
    (3): ReLU()
    (4): Linear(in_features=100, out_features=10, bias=True)
    (5): ReLU()
    (6): Linear(in_features=10, out_features=1, bias=True)
  )
)

最后拟合结果如下, 结果很好,

在实践中发现,adam 优化器 比SGD 优化器效果好,当然理论上也该如此。

github代码链接:

https://github.com/KJsouth/code_study/tree/master/Fitfuc

参考链接:

pytorch深度学习:神经网络拟合方程(回归问题)_深度学习 回归问题-CSDN博客

使用 pytorch 创建神经网络拟合sin函数-CSDN博客

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值