- 博客(284)
- 收藏
- 关注
原创 6年年化收益46%,最大回撤率为16%的策略(附python代码)
在星球里下载的策略,保存的toml的格式,有些同学说,怎么不是代码。其实toml就是json的存储格式,json就是dict,转为策略给engine来执行的。比如夏天热(受热面积大,热一点是肯定的,夏天肯定都是空调了,可能会多耗一点点吧),防水不好可能会漏水(其实现代的建设标准这个应该问题不大)。当然,如果有更强的实力,直接摆平事情,那是更强的一种能力。财务自由,这个自由是什么,就是你有足够的能力建立自己的边界。不喜欢一件事,离得开,有的选,这就是自由。其实每个人做好自己的事情,就挺好的。
2025-05-05 08:18:51
140
原创 年化30-200%,100多个策略支持下载到本地了(python代码已发布)
商业系统,普通人而言,小而美最好,被动收入为佳。所以人生的第一性原理,就是让自己成长,足够优秀,足够有价值。金钱系统是钱生钱,复利,主要是投资理理财系统,年化10%的长期复利,就很舒服了。公开的策略,目前是96个都可以直接下载,星球会员专属是星球会员也可以直接下载。解决的过程,需要人的参与。要解决根上的问题,一是降低安全感的阈值,生于天地间,体验罢了。还是实验室在持续开发和补充的策略,都是可以直接下载的。财富自由,构建金钱系统和商业系统,然后交一些朋友。想象出来的问题,是解决不完的。
2025-04-29 14:23:23
357
原创 当前最好的策略年化205%,100多个策略可以在软件上查看了(python代码下载)
然后小心翼翼,啥也不敢,战战兢兢“逃避”,能不做的事情,都不做;等,支持vnpy,qlib,backtrader和bt引擎,内置多个。根源没能解决,过了这一件,还会很快有下一件,无穷无尽,仓鼠之轮。所谓“焦虑”,就是怕,怕未来发生你“应付”不了的事情,对不对?正确的方式,跳出循环,不了了之,当然是正确处理之道。你可以用尽力气,说服,折腾去所谓“解决”一件事。,每周五迭代一次,代码和数据在星球全部开源。可以,这种所谓“意料之外”,肯定防不胜防。这种广泛性焦虑,是解决不完的。扩展 • 历史文章。
2025-04-28 11:33:18
255
原创 十年年化33%,宽基轮动也可以有不错的效果(策略代码下载)
可以拉取网站策略,查看回测结果(quantstats,lightweight-charts显示回测结果)。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。3、新建本地策略,调试看结果,发布到网站参与排名或跟踪结果。2、依权限查看/修改策略参数后,运行并查看回测结果。,每周五迭代一次,代码和数据在星球全部开源。情绪是假的,不抗争,不逃避,不屈从。而且,其实我们并未远离电脑、手机。偶尔远离都市,拉拉家常,也挺好。似了未了,不了了之,如此而已。扩展 • 历史文章。
2025-04-27 11:25:26
268
原创 策略优选里,最好的策略,年化收益207% | 说说金钱系统的运作逻辑(python策略下载)
比如股票池,比如因子失效(这一词个人一直有点看法,到底是失效,还是本身就是欠拟合或过拟合?主观交易,有时候过去灵活,灵活到很多人,总感觉这次不一样,然后随意操作。天公还算作美,除了今天连续下了一天雨,这几天基本上,还是可以外出溜达。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。是的,一周的假期,又进入倒计时,明天就是本次休假和行程的最后一天。就像定投、网格这种被动的量化模式,选对标的,其实也是有收益的。更重要的是,由于逻辑清楚,不容易焦虑——跌时赚股,涨时赚钱。
2025-04-25 07:15:58
447
原创 aitrader代码框架在gitee上开源 | lightweight_charts专业金融量化库
说缺点的话,打包后文件夹比较大,200M,压缩后60来M,还算可以接受吧。另外就是杀毒软件可能会误报,我是直接加到信任名单里,不过可以看下,如何解决让它不误报的问题。短期,一天,能做的事情,很有限,其实不必列长长的清单,也许某几天可以完成的很好,但长期会压力大,没有必要。aitrader的框架后续计划在gitee上托管,地址已经同步在星球中,并发布的初始代码。选择脚本,基本参数,然后把本地目录选择一下,就可以打包成exe了。关键是你有没有战略远见,长期思考力,去沉淀一件有价值的事情。只是工作受地点限制。
2025-04-24 07:19:44
315
原创 年化收益198%,回撤仅12% | lightweight-charts:基于 TradingView 的轻量级金融图表库
是否需要传统技术指标更说,应该使用时间序列函数,用Deap进行排序因子的挖掘。本地可以读取相应的列表,不过相应的策略,需要权限查看源代码和参数。其实,我是希望每年都有这么几天,有这样的机会,和父母走走,有散散步,拉拉家常。——希望这样的日子可以持续下去。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。就像《拿铁因素》里说的,每天找一段时间,给自己一个激进的休假。因为在回忆里,没有有确定性,一切的过往,都塑造了今天的我们。因此更需要专注,精力有限,更少更更好,如无必要,勿增实体。
2025-04-23 07:11:15
865
原创 这是一个公开策略,年化142% | polars因子引擎升级完成(python代码+策略下载)
有些就是细节没有是下意识执行的,并没有太深的印象——就是你非得回忆,那确实无法“核实”。核心逻辑就是我们如此这般细心,谨慎之人,大概率不会犯多大的错误,即使偶尔的小错误,或者说错一些话,也并没有多大的影响。多数的人,遇到这种情况,会如何的处理。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。“随大流”,就是想一想,你熟悉的某个人,遇到类似的情况会如何处理?视而不见的前提,是需要识别,识别出什么是“纸老虎”。焦虑感,屈从与对抗,均是输入能量,在强化焦虑状态。扩展 • 历史文章。
2025-04-22 07:33:14
263
原创 年化112.5%,最大回撤24.3%,卡玛比率4.62 | polars因子引擎重构完成(python源代码下载)
从csv dataloader到polars_dataloader,主要是为了使用polars引擎计算因子方便,性能更好。现在的交通都是朝发夕至,回去挺方便的。也谈不上累其实,爸妈在等候,一如继往的等候。最为经常出差的人,这样的旅程就是家常便饭。有时很难想象真有那么一天,可能回去的动力就更加少的多了。其实,有时候,真的希望可以做一个孩子,天真,无忧无虑。“偶尔”纠结过一些小事,但看起来还算有所进步,加油。由于休假在家,只能晚上和早起来调试,终于解决了。可是,我们都已经有了自己的孩子。
2025-04-21 07:24:59
389
原创 年化26.9%的稳健策略|polars重构因子计算引擎(python策略下载)
akshare有一个问题,如果在交易时间同步数据,也能读到当年的数据。而你掌控之外,甚至没有意识到的事情,若发生,你的积累,财富自由就非常关键。事缓则圆,指遇到事情时,放缓处理节奏,冷静应对,往往能找到更周全的解决办法,使结果更圆满。若有一天,你不想,或者无力在参与劳动是,如何还能过着体面的生活。思考代码和量化之外,还要做点啥内,喜欢且擅长,能把个人价值和社会价值结合起来。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。世上本无事,庸人自扰之,无视恐慌和焦虑,安之如怡。
2025-04-20 07:44:09
601
原创 年化16%的大类资产配置策略,稳稳的幸福 | polars替换pandas做因子计算,性能提升30倍!(python策略下载)
polars的性能比pandas确实好,而且计算完成后,可以直接转为pandas,因此我们不使用duckdb,转到polars。同时考虑使用github和gitee来管理代码,这样大家同步代码会更加容易。日子是一天天过,纠结一些事情时候,就会觉得时间过得慢;昨天我们发布了aitrader 6.2,代码进一步精简。不愧于心,不白来一遭,尽情地体验,允许一切发生!一个人的精力真的有限,能做好一点事情就不错了。一直想着,一年至少要回家两次,看看父母。小时候,盼望着长大,好独立生活。进入社会,时间一晃就过去了。
2025-04-19 08:28:11
177
原创 附上年化203%的etf策略,aitrader6.2代码提供下载
多数人是不太会写代码的,我们希望低代码,甚至零代码的方式,大家可以创建出有效的策略。投资品,ETF作为入门选择无疑是最好的,热门的ETF就那么100多支,有债券,商品,股票,黄金,原油,全球大类资产。道理特别简单,无论是个人还是组织,精力和资源都是有限的,要专注,做最有意义,直奔自己目标而去的事情。你只有清楚知道自己最想要什么,在探索的时候,灵感闪现的时候,你才能抓住这个机会。回测框架,bt最优,实盘通过信号对接,无论是qmt,ptrade还是其它。精要主义的逻辑相信大家都懂,也认可,但如何能做到。
2025-04-18 15:38:31
278
原创 年化203%的ETF策略,把信号对接到QMT上即可 | 天勤SDK+ backtrader实盘方案(python代码+数据下载)
情绪是假的,抑郁症或者强迫症的人,脑子里有一些回路出现了佛教里讲的妄念。它们像风从林中刮过,你不应该挡它,你不理的方式呢,就是你接受它,真的接受它,允许一切发生。很多新手同学一上来就问,这个策略在这个平台能跑嘛,其实,有了信号,比如日频的,你就手动执行不是很稳健?在上学那会,就意识到这个问题,选择计算机,就是因为编程可以自己“创造“一个空间,一份价值。真要做投资,也应该是走量化投资,量化投资如果能建立起稳健的系统,那就是真正的被动收入。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。
2025-04-14 11:36:42
713
原创 颠覆传统!MoE大模型量化系统TradExpert:20天回测验证的AI投资新范式
四大LLM专家模块(新闻、市场、阿尔法因子、基本面)协同作战,通用专家智能整合多源数据,支持涨跌预测与选股排序双模式。一种基于混合专家(MoE)框架的新型系统,包含四个专门分析不同金融数据的 LLM 专家模块(新闻、市场数据、阿尔法因子和基本面数据),并通过一个通用专家 LLM 整合各模块的洞察以生成最终预测或交易决策。量化投资的四大范式:手工构建因子,机器构建因子,深度学习整合因子,然后就是基于大模型。:作为比较器,通过松弛排序算法(如改进的冒泡排序)生成 Top-K 股票列表,优化选股策略。
2025-04-13 08:05:02
306
原创 穿越牛熊的硬核策略:年化30%+夏普1.15全解析(python代码+数据下载)| 天勤量化tqsdk初体验
tq sdk安装一个python包即可,不用自己准备数据,要以使用分钟级,甚至tick级的数据来回测,可以很轻松使用模拟账号进行回测。首先是数据准备,尤其是日内数据,数据量是比较大的,一般我们需要商用的数据源。手持烟火以谋生,心怀诗意以谋爱, 且停且忘且随风, 且行且看且从容。从接入实盘的角度,一是回测,二是实盘,希望这两个阶段可以无缝切换。人生之意义,就是想看看,能折腾到什么程度,能体验过什么精彩。拒绝焦虑,拒绝胡思乱想,不给焦虑输入能量,加油!人这一生,生不带来,死不带去。扩展 • 历史文章。
2025-04-12 11:26:43
367
原创 年化30%+到年化177%的策略集,随aitrader_v6.0.1开放源代码下载
站在无垠的时空维度里,或许重要的不是“为什么努力”,而是意识到:我们本身就是宇宙思考自身的方式。每个在晨光中醒来的人,都在参与构建这个宏伟的元叙事——以有限之身,证无限可能。正因生命有期限,孩子第一次奔跑时扬起的尘土才显得珍贵,恋人在车站的告别才有了沉甸甸的分量。我们的努力如同坠入时空深潭的石子,激起的涟漪正在改写尚未诞生的未来。生命的诗意在于有限性,如果人类永生,时间将失去刻度,晨曦与黄昏不再动人,成长的焦虑与蜕变的痛楚都会消散。死亡不是努力的终点,而是将所有这些体验封存为琥珀的永恒瞬间。
2025-04-11 10:54:01
417
原创 近两年年化是177.6%,wxpython+backtrader+quantstats的智能投研平台(系统源码+策略下载)
真实的情况,就是什么也没有发生,什么也不会发生。一个个具体的所谓“事件”,其实是解决不完了,无穷无尽,没完没了。如果什么都不做,老了会不会后悔,说年轻时为什么不勇敢一点点。可是,真心去做了发现,又懊悔自寻烦恼。经历过周期最长的,也经历过强度最大的。事缓则圆,时间将带走一切,如此而已。这需要决心和勇气,以及正常的方法论。当然仍然没有习惯,也无法习惯。其实都知道,焦虑终将会过去。扩展 • 历史文章。战胜过,多数是配合去完成。兴来每独往,胜事空自知。行到水穷处,坐看云起时。偶然值林叟,谈笑无还期。
2025-04-10 15:58:56
283
原创 年化收益177.6%的全球大类资产轮动策略,在quantstats改造后计算是203%
quantstats的年化收益计算偏小,修改之后,在一些场合,似乎又偏大。3、ETF以多因子轮动为主(aitrader,backtrader引擎)。从大类资产配置的角度,或者全天候风险平价的角度,当下应该是最难受的阶段。好在都是长线资金,如果真的指望短期内从这里赚生活费,那就风险太高了。1、期货 日内和实盘,重在自动量化交易(aitrader)。原创内容第851篇,专注智能量化投资、个人成长与财富自由。量化就是按规则来,没有人知道顶和底,相信规则。全球市场剧烈震荡,只有生扛。扩展 • 历史文章。
2025-04-09 16:14:00
333
原创 年化收益183.7%,最大回撤仅7.8%,不确定时间段策略选择避险(策略代码+系统源码下载)
昨天原本预计就连大类资产配置,需要需要大幅度回撤,不过后来看,可能是预期不高,反而感受上还好一点。左侧交易,交易的是趋势,本质就是“追跌杀跌”;右侧交易本质是估值,本质就是“均值回归”。原创内容第850篇,专注智能量化投资、个人成长与财富自由。没有人可以“预测”市场,投资只是一种应对,而且是概率上的。其实就是周期的两个不同的阶段罢了。我自己的在用的大类资产配置,还好。人生到处知何似,应似飞鸿踏雪泥。只是你要清楚自己在做什么,都对。扩展 • 历史文章。这里又回归到投资本质了。
2025-04-08 11:28:35
185
原创 投资策略分析:十年年化32.2%,夏普比1.31的动量斜率策略(策略源码+数据下载)
我们可以通过代码扩展相应的能力和补充相应的数据,接入到一个个Agent里,然后直接以“微服务”的方式提供出终端应用。苏轼被贬黄州期间,借雨中徐行的意象,表达对人生荣辱得失的超越。风雨象征困境,"任平生"的洒脱与"也无风雨也无晴"的淡然,体现了他对意义的理解——意义不在外境,而在心境。使用dify这样的低代码平台的好处,在于可以整合,使用LLM的能力,快速交付一个应用。在财富自由的路上,打工人的想象天花板是A8,有人写的说A8.5是上限。但工薪族能想象的空间,加上超强的理财投资能力,也就是A8水平。
2025-04-06 08:17:29
405
原创 年化30%有多牛?10年翻13倍!普通人如何实现?
当然,上述策略涉及到很多ETF只有近两年的数据,所以回测周期只有两年,所有收益率很高。拉长周期看,其实如果能比较稳健实现20%,就非常厉害了。因为为数不多的,一个人,一台电脑,就可以创造一个世界。本质上还是实力的交锋,所以,努力做好自己的事情就是了。回家的频率从一周,到两周,到数个月,大学变成的按年。但一路走来,发现有些人,有些事,确实没有解释的必要。很幸运,依着兴趣爱好,笃定要学编程,学计算机。有时候,独自一个人,挥洒代码,便是整个世界。年少轻狂,再到三十而立,回归现实,那时候很小,也没有未来的概念。
2025-04-05 09:28:36
266
原创 年化182.9%,回撤仅7.8%的策略连同系统源代码已发布| aitrader 6.0(python代码+数据下载)
短短四句,以"庐山烟雨"和"浙江潮"两种自然景象为喻,道出了"见山是山,见水是水"的三重人生境界。苏轼用禅宗"看山还是山"的思维,揭示了人生从"渴慕"到"放下"的修行过程。但在deepseek的加持下,写gui代码其实很容易,这里aui的大部分代码结构是deepseek等大模型生成后,我来修改的。你只需要大致描述你想到的东西,它就能为你完成的很好,甚至有时候还远超出你的预期。我们追逐的很多"理想",或许只是想象中的执念。我们要做的事情,就是专注于策略,逻辑,实盘就好了。这一个版本的重构,个人是比较喜欢的。
2025-04-04 11:56:18
843
原创 近两年年化182.9%,回撤仅7.8%,夏普3.77,策略代码全公开,backtrader回测(python代码+数据下载)
aitrader_6.0,我们内置了数据源更新到本地,而且支持增量更新——这样大家就不必等我周五发版本再统一更新数据了,可以随时更新,也可以软件启动时,自动更新数据。考虑到实盘回测一体,综合评估下来,backtrader仍然是一体化的最优选择。原创内容第845篇,专注智能量化投资、个人成长与财富自由。这些数据都是后复权之后的,可以直接用于回测策略。扩展 • 历史文章。
2025-04-03 11:31:07
311
原创 策略创新高,年化收益268%,稳稳的幸福 | 底层引擎兼容backtrader,回测实盘一体化。(代码与策略数据下载)
这里的加载有一个好处,就是日期不必对齐,比如A股与美股的calendar不同的,有些股票存在不交易的情况,这种都会自动跳过。接受与改变均不是上策,要改变别人很难,改变环境也需要时间,而接受多是委屈自己。从交易的角度,稳定经过实战以及丰富的社区很重要,这一点backtrader也满足。在A8.5之前,精力应该花在商业系统与体系的构建上,在此之上,可以更多追寻意义。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。但其实类似的人与事,仍然存在着,只是我们有能力置得事外罢了。
2025-04-01 14:49:18
914
原创 策略年化261%,多平台复现确保没有未来函数 | aitrader 5.0桌面版本回测+实盘一体(python代码+数据下载)
toolbar.AddTool(3, "AI量化实验室官网", wx.ArtProvider.GetBitmap(wx.ART_GO_HOME), "打开AI实验室")toolbar.AddTool(8, "策略优选", wx.ArtProvider.GetBitmap(wx.ART_GO_FORWARD), "打开AI实验室商城")——实盘接口也会对接,而且是以散户能接受的低门槛的方式。config_path = os.path.join(script_dir,"imgs", "配置管理.png")
2025-03-31 14:43:45
620
原创 年化收益200%+的策略集 | 实时板块资金热力图 「aitrader 5.0系统代码发布」
indicator = st.radio("分析周期", ["今日", "5日", "10日"], index=0, horizontal=True)df['涨跌幅'] = pd.to_numeric(df[f'{indicator}涨跌幅'], errors='coerce')df['资金净流入(亿)'] = df['资金净流入(亿)'].round(2) # 保留两位小数。df['流向强度'] = abs(df['资金净流入(亿)'])[0.55, "#ffe5e5"], # 浅红色(小幅流入)
2025-03-28 10:36:39
777
原创 年化33.9%的稳健策略 | streamlit和dash驱动的智能量化投研(python代码+数据)
return LabxApp("aitrader_AI量化投资实验室", "com.ailabx",author = "飞狐", home_page = "http://www.ailabx.com")之前我们写过双引擎:streamlit+ dash,现在加一个引擎就是toga+pyecharts。("金融数据下载", create_tab()),等,支持vnpy,qlib,backtrader和bt引擎,内置多个。,每周五迭代一次,代码和数据在星球全部开源。扩展 • 历史文章。守好底线,认真生活。
2025-03-25 11:35:51
1062
原创 年化105%,回撤25.5%掘金量化终端复现星球策略(python代码下载)
是考试,还是沟通,或者旅游等等。阅读也一样,有目标感的成长计划,往往更加务实。因为咱们的回测系统都是自研的,尽管所有代码都给到大家,但偶尔会有同学担心说与成熟平台的运行结果会不会不差别?:return: 趋势评分数组,长度与输入相同,前period-1位为NaN。如果你只说要学英语,或者要阅读,这时候列一个计划,往往是低效的,因为没有目的性。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。:param symbol: 标的代码。
2025-03-21 11:37:56
779
原创 年化超过200%?!不可思议!| Deepseek驱动的多智能体「虚拟对冲基金」开源了!手把手教你用大模型做投资决策
原创内容第830篇,专注量化投资、个人成长与财富自由。今天带来的是“Deepseek驱动的多智能体「虚拟对冲基金」”的系统代码下载。用多智能体协作技术模拟专业对冲基金团队,仅需一行代码就能看到AI如何分析股票、管理风险、生成交易信号!今天我们就来拆解这个「华尔街数字分身」的奥秘。
2025-03-19 11:19:40
668
原创 长期年化141%的策略是否有未来函数?| 可转债数据下载 | 基于manus开源框框架的投资智能体平台(python代码+数据)
所以有纯债价值,纯债溢价率,转股价值,转股溢价率,还有债对应的正股价。做时间的朋友,流量x产品,manus为代表的智能体是”一人企业“的重要支撑。计划本身并不难,很多人都熟悉的“倒排法”,要排起来简单,但真有效的计划,并不容易。目标会有一种力量,尤其在你迷茫,焦虑,陷入低谷的时候,给自己一种力量。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。当然,转债是有明确退市日期的,所以很多都是已经退市的。,每周五迭代一次,代码和数据在星球全部开源。当然,反过来,过度的思虑,也会带来焦虑。
2025-03-17 11:23:14
576
原创 “低代码”配置年化109%,回撤25%的复合排序因子策略,已经发布到网站(python代码+数据)
不期待成为谁的白月光,也不想成为谁的朱砂痣,白月光爱而不得,朱砂痣得而不惜,说白了,都是意难平罢了。很多时候,回过头看,某一个看似普通的决定,在日记里不过是沉闷的一天,但人生可能就此发生了一次转折。——就是所谓的运气罢了,也许是下意识,也是就是偶尔,如此罢了。在量化投资眼前,一切都是因子,但更偏向于高频,至少是日内,分钟级别甚至更短的周期。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。个人努力,时代选择,运气加持,缺一不可。量化投资如何赋能投资?扩展 • 历史文章。
2025-03-11 11:01:54
338
原创 年化109%,回撤25%的复合排序因子,经过波动率和成交量调整(python代码+数据)
只是当时站在三岔路口,眼见风云千樯,你作出选择的那一日,在日记上,相当沉闷和平凡,当时还以为是生命中普通的一天。'512100.SH', # '中证1000ETF','510180.SH', # '上证180ETF','513500.SH', # '标普500ETF',等,支持vnpy,qlib,backtrader和bt引擎,内置多个。'159915.SZ', # '创业板ETF','518880.SH', # '黄金ETF','513100.SH', # '纳指ETF',
2025-03-10 10:27:17
887
原创 年化19.66%,回撤12%的稳健策略|manus的启发:基于大模型多智能体的智能投研系统(python代码+数据)
基于日线本身的空间有限,还有一个提升的方向,或者与实战更为接近,需要分钟线,分钟线不是为了“高频”,而是在盘中按条件触发交易。另外一个方向就是当下最前沿的大模型技术,如何辅助量化投研和投顾,这个才是方向。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。最终得到一个综合考量趋势强度、波动率和风险调整的动量指标。昨天这个策略,基本上是ETF排序轮动投资策略的一个方向。,每周五迭代一次,代码和数据在星球全部开源。综合了多因子,动量,波动率,交易额等等。扩展 • 历史文章。
2025-03-09 07:41:49
770
原创 aitrader_v4.6代码发布,支持duckdb|股票全量数据(python代码+数据)
内心演绎的重逢桥段——我说,好久不见,她说,恭喜你终于实现了当年的梦想!不过有梦想的人是幸福的,可以扛住雨雪风霜;等,支持vnpy,qlib,backtrader和bt引擎,内置多个。这些年,从年少轻狂,到务实努力,遇良人成家,遇贵人立业。总觉得技术在手,搞一个产品,就火了,然后就自由了。明白了多数人,可能终其一生都是普通人的残酷现实。,每周五迭代一次,代码和数据在星球全部开源。没有产品化的思路,也没能打造产品的逻辑。那一年,车站匆匆一别,竟然二十载过去。更何况,当年的技术也并不如当下成熟。
2025-03-07 10:57:50
841
原创 策略排行榜,欢迎来比赛|A股全市场多因子回测框架设计(python代码+数据)
我们第一步增量更新mongo里的日线,然后可以把数据dump到本地的csv,2024年以前的历史数据dump到一个文件目录,2025年的增量单独一个目录,后续增量只需要覆盖这个目录即可,避免每次都全量导数据。——潜意识不干了,开始焦虑。所以,我觉得治本的方式,还是努力向前吧(当然,你得直接从潜意识接受现状,那就当然好),心态上接受不确定性,允许一切发生,一切皆体验。但股票如果把全市场数据都计算一轮,那就太慢了,应该是每个运行周期,先选股,再计算这个池子所需要的择时指标,然后决定仓位分配。
2025-03-06 11:02:14
716
原创 年化27%,ETF综合评分策略结合RSRS择时(python代码+数据)
aitrader代码,自研因子表达式引擎、遗传算法(Deap)因子挖掘引擎等,支持vnpy,qlib,backtrader和bt引擎,内置多个年化30%+的策略,每周五迭代一次,代码和数据在星球全部开源,还有ailabx.com低代码策略平台。如果你的等待未来几天的一件事情发生,尤其是你认为重要,但却没有把握的时候,你会觉得时间过得无比的慢。做着自己喜欢的事情,那么别说一周,一月,一年,十年,弹指一挥间。有时候,希望时间过得快,孩子快快长大,可是转念一想,时间的流逝就意味着父母的老去。突然有一刻,好想家。
2025-03-04 11:33:53
321
原创 低代码配置出的年化70%,夏普2.06的策略。(python代码+数据下载)
等,支持vnpy,qlib,backtrader和bt引擎,内置多个。遇到困境时,“享受”困境,充分地体验,“毕竟”这样的机会不多。原创内容第813篇,专注量化投资、个人成长与财富自由。,每周五迭代一次,代码和数据在星球全部开源。看社区里有同学写了一个策略,挺厉害的。绝对的允许,充分地体验,允许一切发生。那些打不死我们的,终将让我们更加强大!这一切,终将成为你时过境迁后的笑谈。我相信,困境终将过去,而且会很快。凡事遇见,皆为因果,均为渡你而来。提升自己,锻炼心性,让自己成长。接纳焦虑,与之共处,进而平息。
2025-03-02 09:03:22
709
原创 年化25.7%,通过斜率拟合度对全球核心ETF评分策略在线上可查看参数(python代码+数据)
r_squared = np.nan_to_num(r_squared, nan=0.0) # 处理零方差情况。'159915.SZ', # 创业板100(成长股,科技股,中小盘):return: 趋势评分数组,长度与输入相同,前period-1位为NaN。'510180.SH', # 上证180(价值股,蓝筹股,中大盘)等,支持vnpy,qlib,backtrader和bt引擎,内置多个。,每周五迭代一次,代码和数据在星球全部开源。aitraderv4.5,重点更新,3、ETF历史数据更新到最新。
2025-02-28 10:02:31
647
原创 几秒钟创建一个年化20%的策略:会员专属策略上线,不需要积分即可查看策略和回测啦。
大模型给出的解决方案:往前查就近的一个财报日期,而且,每支股票的发布日期不一定相同,肯定无法用where date=‘date’。函数按股票代码分组,并按日期降序排列,为每支股票的财报日期分配一个行号。随着模型本身的长思考能力的增强,模型本身就能,且更好地完成这样的任务。等,支持vnpy,qlib,backtrader和bt引擎,内置多个。关于AGI之路,在应用层面上,目前我的观感,确实没有太多技术深度。有时候,似乎也不知道在恐慌什么,明明也挺好的。,每周五迭代一次,代码和数据在星球全部开源。
2025-02-27 11:35:31
437
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人