DQN

将神经网络与Q-learning结合,避免在庞大state的情况建立Q表。

DQN

DQN中包含两个神经网络target-net(训练q-target), eval-net(训练q-eval).
利用 eval-net 训练参数然后更新 target-net 参数。

Double DQN

为解决Q现实Qmax()造成过估问题
Q_eval (Q估计中的), Q_next (Q现实中的).
原本:Q_next = max(Q_next(s’, a_all))
修改: Q_next = Q_next(s’, argmax(Q_eval(s’, a_all)))

Dueling DQN

优化操作

原:Q() = V()
修改: Q() = V() + A()

结果 收敛更好

其中内容参考莫烦教程莫烦课程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值