将神经网络与Q-learning结合,避免在庞大state的情况建立Q表。
DQN
DQN中包含两个神经网络target-net(训练q-target), eval-net(训练q-eval).
利用 eval-net 训练参数然后更新 target-net 参数。
Double DQN
为解决Q现实Qmax()造成过估问题
Q_eval (Q估计中的), Q_next (Q现实中的).
原本:Q_next = max(Q_next(s’, a_all))
修改: Q_next = Q_next(s’, argmax(Q_eval(s’, a_all)))
Dueling DQN
优化操作
原:Q() = V()
修改: Q() = V() + A()
结果 收敛更好
其中内容参考莫烦教程莫烦课程