问题描述
为了准备一个学生节,组织者在会场的一片矩形区域(可看做是平面直角坐标
系的第一象限)铺上一些矩形地毯。一共有n 张地毯,编号从1 到n。现在将这些地毯按照
编号从小到大的顺序平行于坐标轴先后铺设,后铺的地毯覆盖在前面已经铺好的地毯之上。
地毯铺设完成后,组织者想知道覆盖地面某个点的最上面的那张地毯的编号。注意:在矩形
地毯边界和四个顶点上的点也算被地毯覆盖。
输入格式
输入共 n+2 行。
第一行,一个整数 n,表示总共有n 张地毯。
接下来的 n 行中,第i+1 行表示编号i 的地毯的信息,包含四个正整数a,b,g,k,每
两个整数之间用一个空格隔开,分别表示铺设地毯的左下角的坐标(a,b)以及地毯在x
轴和y 轴方向的长度。
第 n+2 行包含两个正整数x 和y,表示所求的地面的点的坐标(x,y)。
输出格式
输出共 1 行,一个整数,表示所求的地毯的编号;若此处没有被地毯覆盖则输出-1。
样例输入
3
1 0 2 3
0 2 3 3
2 1 3 3
2 2
样例输出
3
样例输入
3
样例输出
-1
数据规模和约定
对于 30%的数据,有n≤2;
对于 50%的数据,0≤a, b, g, k≤100;
对于 100%的数据,有0≤n≤10,000,0≤a, b, g, k≤100,000。
1 0 2 3
0 2 3 3
2 1 3 3
4 5
//和CCF的窗口有点像
#include<iostream>
using namespace std;
struct Point {
int a, b, g, k;
}p[10001];
int main()
{
int n;
int x, y, NUM = 0;
cin>>n;
for (int i=1;i<=n;i++)
{
cin >> p[i].a >> p[i].b >> p[i].g >> p[i].k;
}
cin >> x >> y;
int i;
for (i=1;i<=n;i++)
{
if (p[i].a<=x && x<=p[i].a+p[i].g && p[i].b<=y && y<=p[i].b+p[i].k)
{
NUM=i;
}
}
if(NUM == 0)
cout << "-1";
else
cout << NUM;
return 0;
}