#include<cstdio>
#include<iostream>
using namespace std;
typedef long long LL;
LL n, m, ans, x, y, op, val;//因为下面有的函数需要用到x,y,val值,懒得传参,故直接写为全局变量
const int N = 100000;
struct Node{
LL l, r, sum, lazy;//左孩子,右孩子,求和,懒惰标记
}tree[N<<2];//一般会开为给定最大数组的4倍
//构建树
void Build(int k, int l, int r)
{
//(l, r)为一个区间 类似于(1, 10)--》(1, 5)(6, 10)--》.....
tree[k].l = l;//l为该子树的最小值
tree[k].r = r;//r为该子树的最大值
if(tree[k].l==tree[k].r)
{
scanf("%lld",&tree[k].sum);
return ;
}
LL mid=(tree[k].l+tree[k].r)>>1;
Build(k<<1, l, mid);//构建左子树 即(2*k)
Build(k<<1|1, mid+1, r);//构建右子树 即(2*k+1)
//因为是递归构造树,所以求该K节点的sum即可用以下式子直接求出(相当于递归到叶子结点,然后从叶子结点往上更新父节点的值)
tree[k].sum = tree[k<<1].sum+tree[k<<1|1].sum;
}
//向下传递懒惰标记,传递完后该节点的懒惰标记归0
void PushDown(LL k)
{
tree[k<<1].lazy += tree[k].lazy;
tree[k<<1|1].lazy += tree[k].lazy;
tree[k<<1].sum += (tree[k<<1].r-tree[k<<1].l+1)*tree[k].lazy;
tree[k<<1|1].sum += (tree[k<<1|1].r-tree[k<<1|1].l+1)*tree[k].lazy;
tree[k].lazy=0;
}
void Query(int k)//求某一区间的和
{
//(x,y) 完全包含该区间
if(x<=tree[k].l && y>=tree[k].r)
{
ans += tree[k].sum;
return ;
}
//(x, y)不包含同一区间,则将懒惰标记向下传给左右孩子
if(tree[k].lazy)
PushDown(k);
LL mid = (tree[k].l+tree[k].r)>>1;
if(x <= mid)//有一部分位于左子树
Query(k<<1);
if(y>mid)//有一部分位于右子树
Query(k<<1|1);
}
//区间更新
void UpdateSQ(LL k)
{
//若(x, y)区间包含该节点的区间,则更新该节点的sum值和懒惰标记
if(tree[k].l>=x && tree[k].r<=y)
{
tree[k].sum += (tree[k].r-tree[k].l+1)*val;
tree[k].lazy += val;
return ;
}
//因为(x, y)不能完全包含该节点的区间,将懒惰标记传给他的孩子,继续向下更新
if(tree[k].lazy)
PushDown(k);
LL mid=(tree[k].l+tree[k].r)>>1;
if(x <= mid)
UpdateSQ(k<<1);
if(y > mid)
UpdateSQ(k<<1|1);
//更新父节点方法与Build里的一样
tree[k].sum=tree[k<<1].sum+tree[k<<1|1].sum;
}
int main()
{
//scanf("%lld%lld", &n, &m);
cin >> n >> m;
//从上向下构建树
Build(1, 1, n);
for(int i=1; i<=m; i++) {
ans=0;
cin >> op >> x >> y;
if(op == 1) {
cin >> val;
//从上开始查找是否在更新区间内,若能直接更新则更新,否则一直缩小区间
UpdateSQ(1);
}
else {
//从上开始查找是否完全在要求区间内,若能直接加和,否则一直缩小区间,符合条件(完全在要求区间内)加和
Query(1);
cout << ans << endl;
}
}
return 0;
}