燧机科技的博客

专注视频监控图像识别分析 算法定制 边缘分析盒

  • 博客(366)
  • 资源 (1)
  • 收藏
  • 关注

原创 煤矿电子封条建设实施方案算法 yolov7

煤矿电子封条建设实施方案算法通过yolov7网络模型深度学习技术,煤矿电子封条建设实施方案算法作为一种智能化安全新模式被广泛应用于各类场景中。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

2023-05-31 14:46:21 157

原创 脱岗监测预警系统 yolov5

脱岗监测预警系统可以通过python+yolov5网络模型深度学习算法,脱岗监测预警算法对现场人员岗位进行实时监测,自动识别是否存在脱岗行为,并及时发出警报。Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框)

2023-05-30 08:46:13 649

原创 学校食堂明厨亮灶 yolov8

​学校食堂明厨亮灶可以yolov8网络模型技术,学校食堂明厨亮灶通过对厨师的穿戴情况行为举止等进行监测。YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的SOTA模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的C3结构换成了梯度流

2023-05-27 23:47:06 850

原创 拥挤聚集智能监测算法

拥挤聚集智能监测算法可以通过yolov7网络模型深度学习框架对人员数量、密度等进行实时监测,拥挤聚集智能监算法识别出拥挤聚集的情况,并及时发出预警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。

2023-05-26 09:13:05 609

原创 睡岗识别 TensorFlow

睡岗识别可以通过TensorFlowAI深度学习框架智能分析技术,睡岗识别识别出现场人员是否存在睡岗情况,及时发出预警,避免因操作人员的疏忽而导致的安全事故。TensorFlow 是一个开源的机器学习的框架,我们可以使用 TensorFlow 来快速地构建神经网络,同时快捷地进行网络的训练、评估与保存。也正是因为 TensorFlow 是一个开源的软件库,因此只要我们安装了 TensorFlow,我们就可以使用import 的方式来引入。

2023-05-24 15:25:30 1391

原创 煤矿电子封条智能监管系统 TensorFlow

煤矿电子封条智能监管系统基于TensorFlowAI开源的机器学习的框架,煤矿电子封条智能监管系统可以对设备及人员行为和穿戴着装进行实时监测和管理。相比于其他的机器学习框架,Tensorflow 框架是最适用于工业部署的一个机器学习框架,换句话说,TensorFlow 非常适用于在生产环境中进行应用。整个项目开源;文档非常全面而且包含中文教程,学习成本比较低;其内部含有很多高阶神经网络API,我们可以用一个语句来生产一个网络;使用其内部的TensorFlow Service可以实现快速上线部署;得益于高阶A

2023-05-23 10:13:28 290

原创 煤矿电子封条系统 yolov7

煤矿电子封条系统通过yolov7网络模型算法,煤矿电子封条系统可以实现对煤矿井下人员的出入管理,提高对煤矿井下人员的监管效果。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还

2023-05-22 12:10:18 237

原创 煤矿电子封条实施方案 yolov7

煤矿电子封条实施方案采用YOLOv7网络模型算法技术,煤矿电子封条实施算法模型过将全国各省矿山实时监测数据,实现对全国各矿山及时有效的处理及分析。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

2023-05-21 17:24:46 588

原创 登高作业安全带穿戴识别系统 yolov5

登高作业安全带穿戴识别系统通过yolov5+python网络框架模型技术,登高作业安全带穿戴识别算法模型实现对登高作业人员是否穿戴安全带进行监测并及时发出警报。YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎,接下来我们介绍YOLO 系列算法。Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知

2023-05-20 12:34:50 627

原创 离岗识别 yolov5模型

离岗识别通过yolov5网络模型技术,离岗识别可以自动识别现场画面中人员离岗脱岗睡岗等行为,发现违规行为立即抓拍告警。YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升。虽然YOLOv5算法并没有与YOLOv4算法进行性能比较与分析,但是YOLOv5在COCO数据集上面的测试效果还是挺不错的。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括

2023-05-19 20:47:28 594

原创 山西煤矿电子封条算法 opencv

山西煤矿电子封条通过python+opencv网络模型AI视觉技术,python+opencv算法模型实现对出入井人监察控制、调度室空岗识别、生产作业状态、摄像头遮挡、挪动角度识别、货运车辆出矿识别等。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。

2023-05-19 20:15:49 1052

原创 矿山电子封条 yolov8网络模型

​矿山电子封条通过yolov8网络模型利用AI图像智能视频识别等技术,矿山电子封条yolov8网络模型智能分析异常情况,包括不限于人数变化情况、出入井人员以及相关现场设备开停状态进行自动全天候远程监控。YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。按照模型结构设计、Loss 计算、训练数据增强、训练策略和模型推理过程共 5 个部分详细介绍 YOLOv8

2023-05-17 09:18:22 209

原创 监控室值班人员脱岗睡岗识别算法 yolov7

监控室值班人员脱岗睡岗识别算法基于Yolov7深度学习神经网络算法,监控室值班人员脱岗睡岗识别算法模型可以7*24小时不间断自动人员是否在工位上(脱岗睡岗玩手机),若人员没有在工位,系统则立即抓拍告警,算法鲁棒性强。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将

2023-05-16 09:25:46 2075 3

原创 甘肃非煤矿山电子封条 智慧矿山 opencv

甘肃非煤矿山电子封条 智慧煤矿接入国家矿山安全平台是通过python+opencv网络模型,甘肃非煤矿山电子封条python+opencv网络模型对关键位置(回风井口、运人井口、车辆出入口)对现场人员行为、数量、穿戴着装及设备状态各数据进行实时监控分析。python是在运行的时候将程序翻译成机器语言;解释型语言的程序不需要在运行前编译,在运行程序的时候才翻译,专门的解释器负责在每个语句执行的时候解释程序代码,所以解释型语言每执行一次就要翻译一次,与之对应的还有编译性语言。OpenCV基于C++实现,同时提供

2023-05-15 01:14:17 365

原创 非煤矿山电子封条建设算法 yolov8

非煤矿山电子封条建设算法模型通过yolov8网络模型AI视频智能分析技术,算法模型对作业状态以及出井入井人员数量变化、人员睡岗离岗等情况实时监测分析,及时发现异常动态,自动推送生成的违规截图报警信息。现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑

2023-05-14 13:25:10 936

原创 非煤矿山电子封条 yolov7

非煤矿山电子封条通过yolov7+python网络模型技术,非煤矿山电子封条可以对矿山主副井口、风井口、车辆出入口和调度室等全天候不间断实时分析预警,发现人员违规行为及异常设备状态立即告警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可

2023-05-13 23:44:15 270

原创 监控室值班人员脱岗识别算法 opencv

监控室值班人员脱岗识别算法模型通过python+opencv网络深度学校模型技术,监控室值班人员脱岗识别算法模型实现企业总监控室值班人员脱岗、睡岗、玩手机等场景的AI识别,不需人为干预全天候自动识别。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理

2023-05-12 10:11:10 495

原创 非法捕捞识别预警系统 yolov7

非法捕捞识别预警系统通过yolov7网络模型AI视频分析技术,非法捕捞识别预警系统模型算法能够对河道湖泊画面场景中出现的非法捕捞行为进行7*24小时不间断智能检测识别实时告警通知相关人员及时处理。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,整个系统如图5所示:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。

2023-05-11 10:00:56 344

原创 工服智能监测预警算法 yolov8

工服智能监测预警系统通过yolov8网络模型算法,工服智能监测预警算法对现场人员未按要求穿戴工服工装则输出报警信息,通知后台人员及时处理。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎。

2023-05-10 01:00:40 380

原创 校园食堂明厨亮灶AI分析系统 yolov5

校园食堂明厨亮灶监控分析系统通过yolov5网络模型技术,校园食堂明厨亮灶监控分析模型算法针对校园餐厅后厨不按要求戴口罩、不穿厨师帽、陌生人员进入后厨、厨师不穿厨师服、上班时间玩手机、老鼠识别等行为自动识别抓拍告警。Yolo算法,其全称是You Only Look Once: Unified, Real-Time Object Detection,其实个人觉得这个题目取得非常好,基本上把Yolo算法的特点概括全了:You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统

2023-05-09 11:28:46 416

原创 ai皮带跑偏撕裂监测算法 yolov7

ai皮带跑偏撕裂监测系统算法基于yolov7网络模型人工智能视觉技术,ai皮带跑偏撕裂监测算法模型自动识别现场画面中传送皮带撕裂、跑偏、偏移等情况,立即告警抓拍存档同步回传后台。YOLO 的核心思想就是把目标检测转变成一个回归问题,利用整张图作为网络的输入,仅仅经过一个神经网络,得到bounding box(边界框) 的位置及其所属的类别。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于

2023-05-08 08:47:20 1476

原创 智慧工地烟火识别算法 opencv

智慧工地烟火识别系统应用python+opencv深度学习算法模型技术分析前端视频信息,智慧工地烟火识别算法模型主动发现工地或者厂区现场区域内的烟雾和火灾苗头及时进行告警。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序

2023-05-07 09:55:40 240

原创 人员拥挤检测系统 yolov5

人员拥挤检测系统通过YOLOv5网络模型算法技术,人员拥挤检测系统算法模型对校园/厂区车间/街道等场景的异常的人群聚集(出现拥挤情况)时,立刻抓拍存档并通知相关人员及时处理。在介绍Yolo算法之前,首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了。整体来看,Yolo算法采

2023-05-06 08:49:19 426

原创 工地烟火AI监控识别分析系统 yolov7

工地烟火AI监控识别分析系统通过yolov7网络模型技术,工地烟火AI监控识别分析系统对工地或者厂区现场监控区域内的烟火进行实时分析报警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

2023-05-05 00:51:20 705

原创 互联网明厨亮灶智慧监管算法 yolov7

互联网明厨亮灶智慧监管系统基于pytho+yolov7网络模型AI视觉图像分析技术,互联网明厨亮灶智慧监管算法模型可以识别人员行为及穿戴是否合规,不穿厨师服、不按要求穿戴厨师帽或者佩戴口罩和手套、行为如违规在后厨抽烟、出现老鼠等情景。近几年来,目标检测算法取得了很大的突破。比较流行的算法可以分为两类,一类是基于Region Proposal的R-CNN系算法(R-CNN,Fast R-CNN, Faster R-CNN),它们是two-stage的,需要先使用启发式方法(selective search)或

2023-05-04 00:56:48 575

原创 设备仪器仪表盘读数识别算法 yolov5

设备仪器仪表盘读数识别系统基于YoLov5网络模型分析技术,设备仪器仪表盘读数识别算法模型自动识别指针型仪表读数。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好。在介绍Yolo算法之前,我们回忆下RCNN模型,RCNN

2023-05-03 18:02:36 530

原创 作业区域工服穿戴识别算法 yolov7

作业区域工服穿戴识别系统基于yolov7视频智能图像识别技术,作业区域工服穿戴识别算法模型利用深度学习技术,不需人为干预自动识别现场施工作业人员未按要求穿工作服行为,代替后台工作人员执勤时的人眼判断。YOLOv7 研究团队提出了基于 ELAN 的扩展 E-ELAN,新的 E-ELAN 完全没有改变原有架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,

2023-05-02 00:28:30 492

原创 防护服穿戴检测识别算法 yolov8

防护服穿戴检测识别系统基于yolov8网络模型图片数据识别训练,算法模型自动完成对现场人员是否按照要求穿戴行为实时分析。YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。Backbone:骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLO

2023-05-01 18:42:57 1149

原创 AI行为分析预警系统 opencv

AI行为分析预警系统通过python+opencv网络模型Ai视觉智能分析技术,AI行为分析预警系统可以对实际场景下如车间、电力场景、化工场景、工业生产场景下的人员作业操作行为规范进行有针对性的定制开发,根据每个项目的不同的识别预警需求。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。自从第一个预览版本于2000年公开以来,目前已更新至OpenCV4.5.3。OpenCV基于C++实现,同

2023-04-30 17:10:19 586

原创 玩手机打电话识别监测算法 yolov8

玩手机打电话识别监测系统通过YOLOv8网络模型技术,玩手机打电话识别监测算法对现场有人玩手机抽烟打电话时可以立即自动进行抓拍存档。YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。Backbone:骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,

2023-04-29 11:53:45 815

原创 攀高识别预警系统 yolov7

攀高识别预警系统通过yolov7网络模型技术,攀高识别预警系统对人员违规抽烟、打架斗殴、异常倒地、翻越围墙、异常聚集、打电话、区域侵入等行为分析等立即抓拍及时触发告警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-

2023-04-28 01:39:04 617

原创 烟火识别智能监测系统 yolov5

烟火识别智能监测系统基于python+yolov5网络模型算法智能分析技术,烟火识别智能监测算法模型对现场画面进行实时分析,发现现场出现烟火立即抓拍实时告警。我们选择当下卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。YOLOv5是一种单阶段目标检测算法,该算法

2023-04-27 01:01:27 1347

原创 危险区域闯入识别系统 yolov8

​危险区域闯入识别系统通过YOLOv8网络模型技术,危险区域闯入识别系统对现场画面中发现有人违规闯入禁区,系统立即抓拍告警同步回传后台。YOLOv8提供了一个全新的SOTA模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的C3结构换成了梯度流更丰

2023-04-25 00:57:38 498

原创 矿山电子封条智能监管算法 yolov8

​矿山电子封条智能监管系统通过YOLOv8+python网络模型技术,矿山电子封条智能监管算法模型在对矿井人数变化、生产作业状态、出入井人员等情况实时监测分析,发现煤矿人员作业及状态异常动态及时告警,自动将报警信息推送给后台。YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的SOTA模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景

2023-04-24 08:47:15 385

原创 工装识别工装检测系统 yolov7

工装识别工装检测系统通过yolov7+python网络模型算法智能分析技术,工装识别工装检测系统对现场人员是否穿戴的进行实时分析,发现现场画面人员未按要求着装,系统会自动抓拍发出警报并讲违规图片视频保存下来,同步回传后台提醒监理人员及时处理。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但

2023-04-23 01:51:21 250

原创 行为识别预警系统 opencv

行为识别预警系统通过python+opencv网络模型技术,行为识别预警系统对现场画面中人的行为进行智能分析,发现违规行为自动抓拍告警,同步回传后台存档提醒值班人员及时处理。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库,是由Intel公司俄罗斯团队发起并参与和维护,支持与计算机视觉和机器学习相关的众多算法,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程

2023-04-22 21:40:57 512

原创 生产区域人数超员识别监测算法 yolov5

生产区域人数超员监控报警系统通过yolov5+python网络模型分析技术,生产区域人数超员识别监测算法模型识别到现场画面区域超员时,立即告知后台中心进行告警提醒及时处理。Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个

2023-04-21 09:31:13 157

原创 河道船舶识别检测系统 python

河道船舶识别检测系统通过ppython+YOLOv5网络模型算法技术,河道船舶识别检测系统对画面中的船只进行7*24小时实时监测,若发现存在进行违规采砂或者捕鱼立即自动抓拍触发告警。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中

2023-04-20 09:07:55 326

原创 煤矿电子封条视频监控系统 yolov7

煤矿电子封条视频监控系统基于yolov7+python网络模型视频AI智能分析技术,煤矿电子封条视频监控算法模型对现场皮带撕裂、跑偏、皮带异物、堆煤等设备异常状态实时监控分析自动识别预警。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训

2023-04-19 01:07:27 126

原创 智慧工地火焰烟火识别检测系统 opencv

智慧工地火焰烟火识别检测系统通过python+opencv网络模型算法分析技术,智慧工地火焰烟火识别检测算法模型实现对现场画面中火焰烟雾进行7*24小时不间断识别,实时分析自动报警Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型

2023-04-18 01:03:39 192

安卓API文档

android API文档助于android方面开发

2015-12-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除