加油站智能监控系统改造解决方案针利用机器视觉边缘深度学习技术、计算机视觉学习以及yolo网络模型对加油区、卸油区人员睡岗、抽烟、打电话等行为进行实时分析。OLOv4网络结构中,借鉴了CSPNet的设计思路,仅仅在主干网络中设计了CSP结构。而YOLOv5中设计了两种CSP结构,以YOLOv5s网络为例,CSP1_X结构应用于Backbone主干网络中,另一种CSP2_X结构则应用于Neck网络中。
遍历完所有的mini batch之后相当于在梯度下降中做了1000次迭代,将遍历一次所有样本的行为叫做一个 epoch。在Mini-batch下的梯度下降中做的事情跟full batch一样,只不过我们训练的数据是一个个的子集。 这样在一个epoch中就能进行1000次的梯度下降(走的步数多),而在full batch中只有一次,这提高了算法的运行速度。
FPN的最早是在2017年的CVPR会议上提出的,其创新点在于提出了一种自底向上(bottom-up)的结构,融合多个不同尺度的特征图去进行目标预测。FPN工作认为网络浅层的特征图包含更多的细节信息,但语义信息较少,而深层的特征图则恰恰相反。
public abstract void registerDataSetObserver (DataSetObserver observer)
Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。
public abstract void unregisterDataSetObserver (DataSetObserver observer)
通过调用unregisterDataSetObserver方法,反注册观察者。
public abstract int getCount ()
返回Adapter中数据的数量。
public abstract Object getItem (int position)
Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。
public abstract long getItemId (int position)
获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。